首页> 外文期刊>Journal of vibration and control: JVC >Novel Eddy Current Damping Mechanism for Passive Magnetic Bearings
【24h】

Novel Eddy Current Damping Mechanism for Passive Magnetic Bearings

机译:新型无源电磁轴承涡流阻尼机构

获取原文
获取原文并翻译 | 示例
           

摘要

It is often advantageous to add lateral damping in rotating systems to suppress excessive vibration in both the transverse and torsional directions. Magnetic dampers are advantageous to other damping mechanisms because they provide damping independent of temperature, and are non-contact in nature, which allows for maintenance and lubrication free operation. These damping mechanisms function through the eddy currents that are formed in a conductive material when it is subjected to a time changing magnetic flux. The currents circulate inside the conductor in such a way that a new magnetic field is generated with a polarity that varies with the change in the applied magnetic flux. The interaction between the applied magnetic field and the field due to the eddy currents causes the generation of a force that opposes the change in flux. However, due to the internal resistance of the conductor the eddy currents will dissipate into heat, causing a removal of energy from the system. This dissipation of energy allows a magnet and conductor to form a damper that may be used to suppress the vibration of a structure. However, when used in a rotating system this additional damping often comes at the cost of a drag force which reduces the system efficiency. The present study will develop a novel eddy current mechanism in which the rotational drag is negligible. The damper will be theoretically modeled and the damping energy will be determined, while finite element analysis will be used to predict the force exerted on the shaft as it vibrates. Experiments will be performed to validate both the theoretical and finite element model and demonstrate the high damping levels available when using this system.
机译:在旋转系统中增加侧向阻尼以抑制横向和扭转方向的过度振动通常是有利的。电磁阻尼器对其他阻尼机构而言是有利的,因为它们提供的阻尼与温度无关,并且本质上是非接触式的,因此无需维护和润滑。这些阻尼机制通过当导电材料受到时变磁通量时在导电材料中形成的涡流而起作用。电流以这样一种方式在导体内循环,即产生新的磁场,其极性随施加的磁通量的变化而变化。施加的磁场与涡流引起的磁场之间的相互作用会导致产生与通量变化相反的力。但是,由于导体的内部电阻,涡流会散发热量,从而导致系统中的能量流失。能量的这种耗散允许磁体和导体形成阻尼器,该阻尼器可用于抑制结构的振动。然而,当在旋转系统中使用时,这种额外的阻尼通常以拖曳力为代价,这降低了系统效率。本研究将开发一种新型的涡流机制,其中旋转阻力可忽略不计。理论上将对阻尼器进行建模,并确定阻尼能量,而有限元分析将用于预测轴振动时施加在轴上的力。将进行实验以验证理论模型和有限元模型,并演示使用该系统时可提供的高阻尼水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号