...
首页> 外文期刊>Journal of optics >Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure
【24h】

Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

机译:具有金属氧化物半导体结构的纳米光子,热电子太阳盲紫外探测器的设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy > 3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (> 3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, similar to 75% UV absorption and hot electron excitation can be achieved within the mean free path of similar to 20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.
机译:日盲紫外线(UV)检测是指特别是在200 nm-320 nm波长范围内的光子检测。由于没有太阳辐射的背景噪声,它具有从国土安全到环境监测的广泛应用。此应用最常用的固态器件是宽带隙(WBG)半导体光电探测器(例如> 3.5 eV)。但是,WBG半导体很难生长并与Si读出集成电路(ROIC)集成。在本文中,我们在硅上设计了一种用于太阳盲紫外探测器的纳米光子金属氧化物半导体结构。代替使用半导体作为有源吸收剂,我们使用Sn纳米光栅结构吸收UV光子并生成热电子,以通过Sn / SiO2界面势垒进行内部光发射,从而在UV时在金属和n型Si区之间产生光电流励磁。此外,所传输的热电子具有大于3 eV的动能,该动能足够大以引发碰撞电离并在n-Si的导带中产生另一个自由电子。该过程使量子效率加倍。另一方面,大的金属/氧化物界面能垒(> 3.5 eV)也可以通过阻挡可见光子激发的能量较低的电子来实现对太阳盲紫外线的检测。通过优化的设计,可以在距金属/氧化物界面约20 nm的平均自由程内实现约75%的紫外线吸收和热电子激发。此功能大大增强了热电子跨界面势垒的传输,从而产生光电流。与现有的太阳盲UV检测方案相比,Sn纳米光栅的简单几何形状和MOS结构使其易于制造和与Si ROIC集成。提出的器件结构还突破了传统的观念,即金属的光子吸收在固态光电探测器中始终是损失,并且可以潜在地扩展到其他有源金属光子器件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号