...
首页> 外文期刊>Journal of nanoscience and nanotechnology >Stress Impact of a Tensile Contact Etch Stop Layer on Nanoscale Strained NMOSFETs Embedded with a Silicon-Carbon Alloy Stressor
【24h】

Stress Impact of a Tensile Contact Etch Stop Layer on Nanoscale Strained NMOSFETs Embedded with a Silicon-Carbon Alloy Stressor

机译:拉伸接触蚀刻停止层对嵌入硅-碳合金应力源的纳米级应变NMOSFET的应力影响

获取原文
获取原文并翻译 | 示例
           

摘要

For the purpose of enhancing performance in NMOSFETs, inducing an ever increasing tensile stress along Si channel direction is beneficial through the use of advanced strained engineering. By means of the lattice mismatched SiC with different carbon mole fraction, integrated with tensile contact etch stop layer (CESL), the obtainment of significant mobility gain is expected. In the present research, the stress distribution in NMOSFETs with the combinations of Silicon-Carbon (SiC) stressor and tensile CESL is systematically studied by using three-dimensional (3D) finite element analysis (FEA). Width dependency in conjunction with different nanoscale gate length is also analyzed. The analysis results indicate that the stress impact of SiC stressor resulting from the stress component along channel direction on Si region dominates and tensile CESL could enhance this effect. Further important is that the vertical stress within NMOSFETs, is raised greatly due to tensile CESL through the examined range of gate widths, especially for narrower width. Therefore, the predicted results reveal excellent mobility gain through such strain engineering.
机译:为了增强NMOSFET的性能,通过使用先进的应变工程技术,沿Si沟道方向不断增加的拉应力是有益的。借助于具有不同碳摩尔分数的晶格失配的SiC,并与拉伸接触蚀刻停止层(CESL)集成在一起,有望获得显着的迁移率增益。在本研究中,通过使用三维(3D)有限元分析(FEA)系统地研究了结合了碳硅(SiC)应力源和拉伸CESL的NMOSFET的应力分布。还分析了宽度依赖性以及不同的纳米级栅极长度。分析结果表明,SiC应力源由沿沟道方向的应力分量对Si区产生的应力影响占主导地位,而拉伸CESL可以增强这种效果。进一步重要的是,由于在整个检查的栅极宽度范围内(特别是对于较窄的宽度),通过拉伸CESL,NMOSFET的垂直应力会大大增加。因此,预测结果显示通过这种应变工程获得了极好的迁移率增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号