首页> 外文期刊>Journal of Computational Physics >A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations
【24h】

A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations

机译:Vlasov-Poisson方程的保正性高阶半拉格朗日不连续Galerkin格式

获取原文
获取原文并翻译 | 示例
           

摘要

The Vlasov-Poisson equations describe the evolution of a collisionless plasma, represented through a probability density function (PDF) that self-interacts via an electrostatic force. One of the main difficulties in numerically solving this system is the severe time-step restriction that arises from parts of the PDF associated with moderate-to-large velocities. The dominant approach in the plasma physics community for removing these time-step restrictions is the so-called particle-in-cell (PIC) method, which discretizes the distribution function into a set of macro-particles, while the electric field is represented on a mesh. Several alternatives to this approach exist, including fully Lagrangian, fully Eulerian, and so-called semi-Lagrangian methods. The focus of this work is the semi-Lagrangian approach, which begins with a grid-based Eulerian representation of both the PDF and the electric field, then evolves the PDF via Lagrangian dynamics, and finally projects this evolved field back onto the original Eulerian mesh. In particular, we develop in this work a method that discretizes the 1. +. 1 Vlasov-Poisson system via a high-order discontinuous Galerkin (DG) method in phase space, and an operator split, semi-Lagrangian method in time. Second-order accuracy in time is relatively easy to achieve via Strang operator splitting. With additional work, using higher-order splitting and a higher-order method of characteristics, we also demonstrate how to push this scheme to fourth-order accuracy in time. We show how to resolve all of the Lagrangian dynamics in such a way that mass is exactly conserved, positivity is maintained, and high-order accuracy is achieved. The Poisson equation is solved to high-order via the smallest stencil local discontinuous Galerkin (LDG) approach. We test the proposed scheme on several standard test cases.
机译:Vlasov-Poisson方程描述了无碰撞等离子体的演化过程,该过程由通过静电力自相互作用的概率密度函数(PDF)表示。在数值上求解该系统时,主要困难之一是严格的时间步限制,该时间步限制是由与中等速度到较大速度相关的PDF部分引起的。消除这些时间步长限制的等离子物理学界的主要方法是所谓的“单元中粒子”(PIC)方法,该方法将分布函数离散为一组宏观粒子,而电场则表示为网格。存在这种方法的几种替代方法,包括完全拉格朗日方法,完全欧拉方法和所谓的半拉格朗日方法。这项工作的重点是半拉格朗日方法,该方法首先以PDF和电场的基于网格的欧拉表示形式​​,然后通过拉格朗日动力学使PDF演化,最后将这个演化后的场投影回到原始的欧拉网格上。特别是,我们在这项工作中开发了一种离散化1. +的方法。 1 Vlasov-Poisson系统通过相空间中的高阶不连续Galerkin(DG)方法以及及时的算子拆分半拉格朗日方法。通过Strang运算符拆分,相对容易达到时间的二阶精度。通过额外的工作,使用高阶分割和高阶特征方法,我们还演示了如何将这种方案及时推向四阶精度。我们展示了如何解决所有拉格朗日动力学问题,从而精确地守恒质量,保持正性并实现高阶精度。通过最小的模板局部不连续Galerkin(LDG)方法将泊松方程求解为高阶。我们在几个标准测试用例上测试了提出的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号