首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Computational Determination of Fundamental Pathway and Activation Barriers for Acetohydroxyacid Synthase-Catalyzed Condensation Reactions of alpha-Keto Acids
【24h】

Computational Determination of Fundamental Pathway and Activation Barriers for Acetohydroxyacid Synthase-Catalyzed Condensation Reactions of alpha-Keto Acids

机译:乙酰羟酸合酶催化的α-酮酸缩合反应基本途径和活化障碍的计算确定

获取原文
获取原文并翻译 | 示例
       

摘要

Acetohydroxyacid synthase (AHAS) is the first common enzyme in the biosynthetic pathway leading to the production of various branched-chain amino acids. AHAS is recognized as a promising target for new antituberculosis drugs, antibacterial drugs, and herbicides. Extensive first-principles quantum mechanical (QM) and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have enabled us, in this study, to uncover the fundamental reaction pathway, determine the activation barriers, and obtain valuable insights concerning the specific roles of key amino acid residues for the common steps of AHAS-catalyzed condensation reactions of a-keto acids. The computational results reveal that the rate-determining step of the AHAS-catalyzed reactions is the second reaction step and that the most important amino acid residues involved in the catalysis include Glu144', Gln207', Gly121', and Gly511 that form favorable hydrogen bonds with the reaction center (consisting of atoms from the substrate and cofactor) during the reaction process. In addition, Glu144' also accepts a proton from cofactor thiamin diphosphate (ThDP) through hydrogen bonding during the catalytic reaction. The favorable interactions between the reaction center and protein environment remarkably stabilize the transition state and, thus, lower the activation barrier for the rate-determining reaction step by similar to 20 kcal/mol. The activation barrier calculated for the rate-determining step is in good agreement with the experimental activation barrier. The detailed structural and mechanistic insights should be valuable for rational design of novel, potent AHAS inhibitors that may be used as promising new antituberculosis drugs, antibacterial drugs. and/or herbicides to overcome drug resistance problem.
机译:乙酰羟酸合酶(AHAS)是生物合成途径中导致产生各种支链氨基酸的第一种常见酶。 AHAS被公认为是抗结核新药,抗菌药和除草剂的有希望的靶标。广泛的第一性原理量子力学(QM)和混合量子力学/分子力学(QM / MM)计算使我们能够在本研究中发现基本的反应途径,确定活化障碍并获得有关特定作用的宝贵见解关键氨基酸残基用于AHAS催化α-酮酸缩合反应的一般步骤。计算结果表明,AHAS催化反应的速率决定步骤是第二步反应,并且催化过程中最重要的氨基酸残基包括形成良好氢键的Glu144',Gln207',Gly121'和Gly511在反应过程中与反应中心(由底物和辅因子组成的原子)反应。此外,Glu144'还通过催化反应中的氢键从辅因子硫胺素二磷酸(ThDP)接受质子。反应中心和蛋白质环境之间的良好相互作用显着稳定了过渡态,因此,速率确定反应步骤的活化势垒降低了约20 kcal / mol。计算速率确定步骤的活化壁垒与实验活化壁垒非常吻合。详细的结构和机理见解对于合理设计新颖,有效的AHAS抑制剂可能有价值,这些抑制剂可用作有希望的新型抗结核药物,抗菌药物。和/或除草剂以克服耐药性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号