首页> 外文期刊>Journal of chemical theory and computation: JCTC >Scalable Anisotropic Shape and Electrostatic Models for Biological Bromine Halogen Bonds
【24h】

Scalable Anisotropic Shape and Electrostatic Models for Biological Bromine Halogen Bonds

机译:生物溴卤素键的可扩展各向异性形状和静电模型

获取原文
获取原文并翻译 | 示例
           

摘要

Halogens are important substituents of many drugs and secondary metabolites, but the structural and thermodynamic properties of their interactions are not properly treated by current molecular modeling and docking methods that assign simple isotropic point charges to atoms. Halogen bonds, for example, are becoming widely recognized as important for conferring specificity in protein-ligand complexes but, to this point, are most accurately described quantum mechanically. Thus, there is a need to develop methods to both accurately and efficiently model the energies and geometries of halogen interactions in biomolecular complexes. We present here a set of potential energy functions that, based on fundamental physical properties of halogens, properly model the anisotropic structure-energy relationships observed for halogen interactions from crystallographic and calorimetric data, and from ab initio calculations for bromine halogen bonds in a biological context. These energy functions indicate that electrostatics alone cannot account for the very short-range distances of bromine halogen bonds but require a flattening of the effective van der Waals radius that can be modeled through an angular dependence of the steric repulsion term of the standard Lennard-Jones type potential. This same function that describes the aspherical shape of the bromine is subsequently applied to model the charge distribution across the surface of the halogen, resulting in a force field that uniquely treats both the shape and electrostatic charge parameters of halogens anisotropically. Finally, the electrostatic potential was shown to have a distance dependence that is consistent with a charge-dipole rather than a simple Coulombic type interaction. The resulting force field for biological halogen bonds (ffBXB) is shown to accurately model the geometry-energy relationships of bromine interactions to both anionic and neutral oxygen acceptors and is shown to be tunable by simply scaling the electrostatic component to account for effects of varying electron-withdrawing substituents (as reflected in their Hammett constants) on the degree of polarization of the bromine. This approach has broad applications to modeling the structure-energy relationships of halogen interactions, including the rational design of inhibitors against therapeutic targets.
机译:卤素是许多药物和次级代谢产物的重要取代基,但是它们的相互作用的结构和热力学性质并未通过当前的分子建模和对接方法(将简单的各向同性点电荷分配给原子)正确处理。例如,卤素键已被广泛认为对赋予蛋白质-配体复合物特异性具有重要意义,但就这一点而言,用机械方法最准确地描述了卤素键。因此,需要开发一种方法,以准确而有效地模拟生物分子复合物中卤素相互作用的能量和几何形状。我们在此介绍了一组潜在的能量函数,这些函数基于卤素的基本物理特性,正确地建模了从晶体学和量热数据以及从头算出的生物学意义上的溴卤素键观察到的卤素相互作用的各向异性结构-能量关系。 。这些能量函数表明,仅凭静电不能解决溴卤键的短距离距离,而需要有效范德华半径的平坦化,可以通过标准Lennard-Jones的空间排斥项的角度依赖性来建模类型潜力。随后应用了描述溴的非球面形状的相同功能,以模拟整个卤素表面上的电荷分布,从而产生了一个力场,该场独特地各向异性地处理了卤素的形状和静电荷参数。最终,静电势显示出与电荷偶极子的距离相关性,而不是简单的库伦比型相互作用。结果表明,生物卤素键(ffBXB)产生的力场可以准确地模拟溴与阴离子和中性氧受体相互作用的几何能量关系,并且可以通过简单地缩放静电分量来解决电子变化的影响而可调。 -在溴的极化度上的取代基(如其哈米特常数所反映)。该方法在建模卤素相互作用的结构-能量关系方面具有广泛的应用,包括针对治疗靶标的抑制剂的合理设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号