...
首页> 外文期刊>Journal of biomechanical engineering. >An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking
【24h】

An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking

机译:综合的肌肉骨骼-有限元模型,评估行走过程中负重对胫骨的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.
机译:先前的研究已经评估了负载运输对胫骨的影响。在这里,我们将对这些研究进行扩展,并研究负载运输对关节反作用力(JRFs)以及胫骨中时空应力/应变分布的影响。利用来自女性受试者的全身运动和地面反作用力,我们计算了四种载重条件下行走过程中的关节和肌肉力。我们在有限元(FE)分析中将这些力作为生理负荷条件来计算应变和应力。我们使用网格变形和映射算法从与性别,年龄和体重指数匹配的受试者的计算机断层扫描(CT)图像中得出材料属性,并在FE模型中使用它们。与无负荷行走相比,膝关节JRF对负荷运输最为敏感,在承受30%的体重(BW)负荷(踝部:16.4%和髋部:19.0%)时,JRF增加了26.2%。此外,我们的模型揭示了内部JRF随负载运送的增加而成比例增加,表明下肢肌肉功能的协调调节。有限元结果反映了行走过程中空间变化的材料特性分布和肌肉参与对胫骨生物力学的复杂影响。我们观察到下垂时胫骨前顶和胫骨内侧表面承受的应力较高,而在一个步行周期内,胫骨的后外侧方面的累积应力较高。我们的发现加强了对以下方面的需求:(1)在对接受短期运动训练的健康受试者进行建模时,生理上准确的负荷条件;以及(2)在评估应力性骨折损伤风险时的应力暴露持续时间。作为了解外部负载的瞬时作用的基本步骤,我们的研究提出了一种评估负载运输与骨骼生物力学之间关系的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号