首页> 外文期刊>VTE/AUFBAU- UND VERBINDUNGSTECHNIK IN DER ELEKTRONIK >Mechanism and growth rate of underfill delaminations~1)
【24h】

Mechanism and growth rate of underfill delaminations~1)

机译:底部填充分层的机理和增长率〜1)

获取原文
获取原文并翻译 | 示例
       

摘要

Any well-informed prognosis of the expected service life of flip-chips must be preceded by and based on a deep understanding of the effects causing a delamination of the under-fills. In this article, we have set out to present a new approach for the analysis of such delaminations. For this purpose, a flip-chip is equipped with a Pyrex plate instead of the conventionally used Si-chip. This makes it possible to create a pictorial record of the interactions in the underfill-passivation-interface with the assistance of a digital camera and a microscope. This method permits a precise, cost-efficient and rapid analysis of underfill delaminations. Comparative studies may help to find reliable material combinations and geometrical guidelines for low-delamination flip-chips.On the basis of this method, we carried out a number of experiments presented in the second half of this article. Delaminations caused by thermal cycling tests in the course of our studies always started at the feet of the contacts and were distributed evenly across the chip surface. No cases for cracks spreading inward from the chip edge were recorded. In test environments of high humidity, a well-formed meniscus at the chip edge served to delay the onset of the delamination process.The study of geometrical parameters showed that circuit-boards of different thickness tended to favour different crack growth patterns and mechanisms. The shape of the crack growth curve was either linear or similar to that of a square root. The analysis of different chip sizes showed that large chips (100 mm~2) did not suffer from proportionally more delaminations than small chips (25 mm~2). If the manufacturing environment allows the production of larger chips, these can under certain circumstances be more reliable than small ones. There were no indications for low contact heights (50 #mu#m) being potentially more hazardous for the underfill-passivation interface than higher ones (100 #mu#m).In the conduct of thermal cycling tests, the transition time between the temperatures needs to be taken into account since it affects the delamination of the underfills from the passivation.The technique presented in this article makes it possible to examine there reliability of flip-chip-assemblies with regard to delaminations of the underfill from the passivation. In the context of comparative studies, suitable material combinations and geometrical guidelines may be established.
机译:对于倒装芯片的预期使用寿命的任何有根据的预后,都必须在对导致底部填充物分层的影响进行深入了解之后,并以此为基础。在本文中,我们着手提出了一种用于分析此类分层的新方法。为此,倒装芯片配备有派热克斯(Pyrex)板,而不是通常使用的硅芯片。这样就可以借助数码相机和显微镜在底部填充钝化界面中创建相互作用的图形记录。这种方法可以对底部填充物分层进行精确,经济高效的快速分析。比较研究可能有助于找到低分层倒装芯片的可靠材料组合和几何准则。在此方法的基础上,我们进行了本文下半部分的大量实验。在我们的研究过程中,由热循环测试引起的分层总是始于触点的脚部,并且均匀地分布在整个芯片表面上。没有记录裂纹从切屑边缘向内扩散的情况。在高湿度的测试环境中,在芯片边缘形成良好的弯月面可以延迟分层过程的开始。几何参数的研究表明,不同厚度的电路板倾向于形成不同的裂纹扩展模式和机制。裂纹扩展曲线的形状是线性的或类似于平方根的形状。对不同切屑尺寸的分析表明,与小切屑(25 mm〜2)相比,大切屑(100 mm〜2)的剥落不成比例地增加。如果制造环境允许生产较大的芯片,则在某些情况下,这些芯片可能比小型芯片更可靠。没有迹象表明低接触高度(50#mu#m)可能比高接触高度(100#mu#m)的底部填充-钝化界面危险更大。在热循环测试中,温度之间的过渡时间由于钝化会影响底部填充材料的分层,因此必须予以考虑。本文介绍的技术使我们有可能检查倒装芯片组件在钝化引起的底部填充材料分层方面的可靠性。在比较研究的背景下,可以建立合适的材料组合和几何准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号