首页> 外文期刊>Data mining and knowledge discovery >A regularized graph layout framework for dynamic network visualization
【24h】

A regularized graph layout framework for dynamic network visualization

机译:动态网络可视化的规则化图形布局框架

获取原文
获取原文并翻译 | 示例

摘要

Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling and dynamic graph Laplacian layout. We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.
机译:许多现实世界的网络(包括社交网络和信息网络)都是随时间变化的动态结构。通常使用一系列静态图形布局来可视化此类动态网络。除了在每个时间步长提供网络结构的可视表示外,该序列还应保留连续时间步长的布局之间的思维导图,以使人们能够解释网络的时间演变。在本文中,我们为在线环境中的动态网络可视化提出了一个框架,其中仅当前和过去的图形快照可用于创建当前布局。所提出的框架通过增加静态图布局算法的成本函数来增加正则化图布局,其中分组罚分阻止了节点与属于同一组的其他节点相距太远,而时间罚则阻止了节点之间较大的运动。连续的时间步长。罚款增加了布局顺序的稳定性,从而保留了思维导图。我们在提出的框架内介绍了两种动态布局算法,即动态多维缩放和动态图拉普拉斯布局。我们将这些算法应用于几个数据集,以说明分组和时间正则化对于产生动态网络的可解释可视化效果的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号