首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Simulation-based evaluation of surface micro-cracks and fracture toughness in high-speed grinding of silicon carbide ceramics
【24h】

Simulation-based evaluation of surface micro-cracks and fracture toughness in high-speed grinding of silicon carbide ceramics

机译:基于仿真的碳化硅陶瓷高速磨削中的表面微裂纹和断裂韧性评估

获取原文
获取原文并翻译 | 示例
           

摘要

Surface/subsurface crack during grinding limits the application of engineering ceramics. High-speed grinding is proposed in ceramics grinding for high material removal rate and surface quality. The dynamic fracture toughness of ceramic materials is established by combining the Johnson-Holmquist 2 damage model for brittle material and the Griffith fracture theory. Single-grit simulation was utilized to investigate the individual crack generation and propagation in silicon carbide (SiC) indentation and engagement under different wheel surface speed. The indentation simulation results indicate that high-speed grinding enhances the SiC plastic deformation in the contact zone. Engagement simulation shows that the micro-crack transforms from deep and narrow longitudinal crack in the subsurface to shallow and width lateral crack on the surface when the wheel surface speed increases with a constant maximum undeformed chip thickness. To validate this model, the high-speed grinding experiments are conducted. The trends of micro-crack evolution, single grit force, and surface roughness of the experimental results at the constant workpiece feed rate match well with the simulation results.
机译:研磨过程中的表面/亚表面裂纹限制了工程陶瓷的应用。为了提高材料去除率和表面质量,建议在陶瓷研磨中使用高速研磨。结合脆性材料的Johnson-Holmquist 2损伤模型和格里菲斯断裂理论,建立了陶瓷材料的动态断裂韧性。利用单粒度模拟研究了在不同车轮表面速度下碳化硅(SiC)压痕和啮合中单个裂纹的产生和扩展。压痕模拟结果表明,高速磨削增强了接触区SiC塑性变形。啮合模拟表明,当砂轮表面速度以恒定的最大未变形切屑厚度增加时,微裂纹从子表面的深而窄的纵向裂纹转变为表面的浅而宽的横向裂纹。为了验证该模型,进行了高速研磨实验。在恒定的工件进给速度下,实验结果的微裂纹发展趋势,单粒度和表面粗糙度趋势与模拟结果吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号