...
首页> 外文期刊>Plasma physics and controlled fusion >Electron temperature and density profile evolution during the edge-localized mode cycle in ohmic and electron cyclotron-heated H-mode plasmas in TCV
【24h】

Electron temperature and density profile evolution during the edge-localized mode cycle in ohmic and electron cyclotron-heated H-mode plasmas in TCV

机译:TCV中欧姆和电子回旋加速器加热的H型等离子体在边缘局限模式循环期间电子温度和密度分布的演变

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of electron temperature and density profiles during quasi-stationary H-mode phases in the TCV tokamak has been investigated for type III and type I edge-localized modes (ELMs) using electron cyclotron heating (ECH) to vary the collisionality. At heating power levels close to the threshold for the L-H transition, ELMs of type III were observed, with an energy loss per ELM below 10% of the total plasma energy. Electron temperature and pressure showed no significant increase during the phase before the ELM crash. ELMs of type I were characterized by a lower repetition rate, but caused fractional energy losses reaching 20%. For this ELM type, a clear increase in pedestal pressure and pressure gradient was observed before the collapse associated with the ELM event. The rapid drop in electron temperature also affected the plasma core explaining the rather large energy losses per ELM. Ideal MHD stability calculations of the edge pedestal with the KINX code showed that high-n ballooning modes restricted the achievable pressure gradient at high collisionality and ELMs of type III. With additional heating and type I ELMs, stability limits were set by medium-n kink-ballooning modes. Comparing the values of the pressure gradients and current densities obtained from experimental data with those of ideal MHD stability calculations showed good agreement. The model, however, needs to account for the radial displacement of the location of maximum pressure gradient during the ELM cycle.
机译:已经使用电子回旋加速器(ECH)改变了TCV托卡马克准静态H模式阶段中电子温度和密度分布的动力学,研究了III型和I型边缘定位模式(ELM)。在接近L-H转变阈值的加热功率水平下,观察到III型ELM,每个ELM的能量损失低于总等离子体能量的10%。在ELM崩溃之前的阶段中,电子温度和压力没有明显增加。 I型ELM的特点是重复率较低,但导致部分能量损失达到20%。对于这种ELM类型,在与ELM事件相关的坍塌之前,观察到基座压力和压力梯度明显增加。电子温度的快速下降也影响了等离子体核心,解释了每个ELM相当大的能量损耗。带有KINX代码的边缘基座的理想MHD稳定性计算表明,高n膨胀模式限制了高碰撞性和III型ELM时可达到的压力梯度。在附加加热和I型ELM的情况下,通过中n个扭结气球模式设定了稳定性极限。从实验数据获得的压力梯度和电流密度值与理想的MHD稳定性计算结果进行比较,显示出很好的一致性。但是,该模型需要考虑ELM周期内最大压力梯度位置的径向位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号