首页> 外文期刊>Wireless Networks >A comparative investigation of deterministic and metaheuristic algorithms for node localization in wireless sensor networks
【24h】

A comparative investigation of deterministic and metaheuristic algorithms for node localization in wireless sensor networks

机译:无线传感器网络中节点定位的确定性和元启发式算法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Location-based services in wireless sensor networks demand precise information of locations of sensor nodes. Range-based localization, a problem formulated as a two-dimensional optimization problem, has been addressed in this paper as a multistage exercise using bio-inspired metaheuristics. A modified version of the shuffled frog leaping algorithm (MSFLA) has been developed for accurate sensor localization. The results of MSFLA have been compared with those of geometric trilateration, artificial bee colony and particle swarm optimization algorithms. Dependance of localization accuracies achieved by these algorithms on the environmental noise has been investigated. Simulation results show that MSFLA delivers the estimates of the locations over 30% more accurately than the geometric trilateration method does in noisy environments. However, they involve higher computational expenses. The MSFLA delivers the most accurate localization results; but, it requires the longest computational time.
机译:无线传感器网络中基于位置的服务需要传感器节点位置的精确信息。基于距离的本地化是一个公式化为二维优化问题的问题,已在本文中进行了涉及生物启发式元启发法的多阶段练习。改编版蛙跳算法(MSFLA)的改进版本已开发出来,可用于精确的传感器定位。将MSFLA的结果与几何三边测量,人工蜂群和粒子群优化算法的结果进行了比较。已经研究了通过这些算法获得的定位精度对环境噪声的依赖性。仿真结果表明,MSFLA可以比嘈杂环境中的几何三边测量方法准确地提供30%以上的位置估计。但是,它们涉及更高的计算费用。 MSFLA提供最准确的本地化结果;但是,这需要最长的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号