首页> 外文期刊>Wireless Networks >A comparative investigation of deterministic and metaheuristic algorithms for node localization in wireless sensor networks
【24h】

A comparative investigation of deterministic and metaheuristic algorithms for node localization in wireless sensor networks

机译:无线传感器网络节点定位确定性和成分识别算法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Location-based services in wireless sensor networks demand precise information of locations of sensor nodes. Range-based localization, a problem formulated as a two-dimensional optimization problem, has been addressed in this paper as a multistage exercise using bio-inspired metaheuristics. A modified version of the shuffled frog leaping algorithm (MSFLA) has been developed for accurate sensor localization. The results of MSFLA have been compared with those of geometric trilateration, artificial bee colony and particle swarm optimization algorithms. Dependance of localization accuracies achieved by these algorithms on the environmental noise has been investigated. Simulation results show that MSFLA delivers the estimates of the locations over 30% more accurately than the geometric trilateration method does in noisy environments. However, they involve higher computational expenses. The MSFLA delivers the most accurate localization results; but, it requires the longest computational time.
机译:无线传感器网络中基于位置的服务需求传感器节点位置的精确信息。基于范围的定位,本文已经解决了作为二维优化问题的问题,作为使用生物启发的核心学的多级练习。已经开发了一种改进的Shuffled Frog Leging算法(MSFLA)的改进版本用于精确的传感器定位。将MSFLA的结果与几何三边形,人造蜜蜂菌落和粒子群优化算法进行了比较。研究了这些算法在环境噪声上实现了本地化精度的依赖性。仿真结果表明,MSFLA在嘈杂环境中的几何三边方法可以更准确地将位置的估计值超过30%。但是,它们涉及更高的计算费用。 MSFLA提供最准确的本地化结果;但是,它需要最长的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号