首页> 外文期刊>IEEE transactions on wireless communications >Convex Relaxation Methods for Unified Near-Field and Far-Field TDOA-Based Localization
【24h】

Convex Relaxation Methods for Unified Near-Field and Far-Field TDOA-Based Localization

机译:统一近场和远场基于TDOA定位的凸松弛方法

获取原文
获取原文并翻译 | 示例

摘要

This paper develops two convex relaxation solutions for the unified localization of a signal source using time difference of arrival measurements, regardless of whether the source is in the near field for coordinate positioning or in the far field for the direction of arrival estimation. The previous study on unified estimation only derived an iterative solution, which is sensitive to initialization. Albeit a coarse initialization was supplied to start the iteration, it may not be sufficient to ensure convergence to the global solution especially when the source is close to the sensors. The proposed solutions come from two novel formulations for optimization, one using the weighted least squares with the modified polar representation of the source position as variable and the other applying fractional programming with the Cartesian coordinate representation instead. Both the optimization problems are solved by first performing semidefinite relaxation and then tightening the relaxed problem by including a set of second-order cone constraints. The two formulations are created from different approaches. Nevertheless, we are able to prove that both the formulations reduce to solving exactly the same mixed semidefinite/second-order cone program and thus establish their equivalence. Furthermore, the proposed solution method is extended to the more practical scenario when sensor position errors are present. The results from both the simulated and real experiments show that the proposed method achieves almost the same performance of the iterative maximum likelihood estimator under ideal initialization.
机译:本文使用到达测量的时间差,为信号源的统一定位开发了两个凸松弛解决方案,无论源是否处于近场,用于坐标定位或在远端估计方向上的远场。以前关于统一估计的研究仅导出迭代解决方案,这对初始化敏感。尽管提供了粗略初始化以启动迭代,但特别是在源靠近传感器时,可以确保到全局解决方案可能不足。所提出的解决方案来自两种新颖的优化制剂,其中使用加权最小二乘与源位置的修改极性表示作为变量,另一个应用与笛卡尔坐标表示的另一个应用分数编程。通过包括一组二阶锥限制,首先执行半纤维弛豫,并通过包括一组二阶锥限制来解决优化问题。两种配方是由不同方法创建的。尽管如此,我们能够证明这两个配方都减少了求解完全相同的混合的半纤维/二阶锥计划,从而建立其等价。此外,当存在传感器位置误差时,所提出的解决方案方法延伸到更实际的场景。模拟和真实实验的结果表明,该方法在理想初始化下实现了迭代最大似然估计器的几乎相同的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号