首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Defect Detection in Transparent Printed Electronics Using Learning-Based Optical Inspection
【24h】

Defect Detection in Transparent Printed Electronics Using Learning-Based Optical Inspection

机译:使用基于学习的光学检测透明印刷电子产品的缺陷检测

获取原文
获取原文并翻译 | 示例

摘要

Printed electronics (PE) is an emerging technology that provides attractive and complementary features compared to traditional wafer-scale silicon fabrication, such as flexible substrate and point-of-use ultralow-cost manufacturing. The low-cost manufacturing and larger feature sizes mandate reduced complexity in circuit size and also limited and transparent printing layers. This enables optical inspection for manufacturing defect detection, eliminating the need for electrical testing for gross defect detection. Therefore, the traditional problem of controllability and observability in logic testing can completely be alleviated. In this article, we present a learning-based method for optical inspection to detect defective transistors in transparent PE. The method leverages domain-specific as well as common inspection features extracted from optical images to detect defective transistors using supervised learning algorithms trained with real fabricated transistor images. The results show that the proposed method detects 95% of the defective transistors, which can significantly reduce the cost of the overall test flow.
机译:印刷电子(PE)是一种新兴技术,与传统的晶片级硅制造相比,提供了吸引力和互补的特点,例如柔性基板和使用点超级成本制造。低成本制造和更大的特征尺寸尺寸授权在电路尺寸和有限且透明的印刷层中降低复杂性。这使得能够进行光学检查来进行制造缺陷检测,从而消除了对总缺陷检测的电气测试的需求。因此,可以完全缓解逻辑测试中的传统可控性和可观察性的问题。在本文中,我们提出了一种基于学习的光学检查方法,以检测透明PE中的缺陷晶体管。该方法利用域特定于域以及从光学图像提取的常见检查特征,以使用具有真实制造的晶体管图像训练的监督学习算法来检测有缺陷的晶体管。结果表明,该方法检测了95%的缺陷晶体管,这可以显着降低整体测试流程的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号