首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Toward Functional Safety of Systolic Array-Based Deep Learning Hardware Accelerators
【24h】

Toward Functional Safety of Systolic Array-Based Deep Learning Hardware Accelerators

机译:朝着基于收缩阵列的深度学习硬件加速器的功能安全

获取原文
获取原文并翻译 | 示例

摘要

High accuracy and ever-increasing computing power have made deep neural networks (DNNs) the algorithm of choice for various machine learning, computer vision, and image processing applications across the computing spectrum. To this end, Google developed the tensor processing unit (TPU) to accelerate the computationally intensive matrix multiplication operation of a DNN on its systolic array architecture. Faults manifested in the datapath of such a systolic array due to latent manufacturing defects or single-event effects may lead to functional safety (FuSa) violation. Although DNNs are known to resist minor perturbations with their inherent fault-tolerant characteristics, we show that the classification accuracy of the model plummets from 97.4% to 7.75% with a minimal fault rate of 0.0003% in the accelerator, implying catastrophic circumstances when deployed across mission-critical systems. Hence, to ensure FuSa of such accelerators, this article provides an extensive FuSa assessment of the accelerator exposed to faults in the datapath, by varying the network parameters, position, and characteristics of the induced error across multiple exhaustive data sets. Furthermore, we propose two novel strategies to obtain a diminutive set of functional test patterns to detect FuSa violation in a DNN accelerator. Our experimental results demonstrate that the obtained test sets can achieve an average of 92.63% (in some cases, up to 100%) fault coverage with cardinality as low as 0.1% of the entire test data set.
机译:高精度和不断增长的计算能力使得各种机器学习,计算机视觉和在计算频谱上的图像处理应用中选择了深度的神经网络(DNN)。为此,谷歌开发了张量处理单元(TPU),以加速在其收缩系统阵列架构上的DNN的计算密集型矩阵乘法操作。由于潜在制造缺陷或单事件效应,在这种收缩系统阵列的数据路径中表现出的故障可能导致功能安全(FUSA)违规。虽然已知DNNS抵抗具有固有的容错特性的轻微扰动,但模特预测的分类精度从97.4%到7.75%,在加速器中最小的故障率为0.0003%,暗示突然部署时的灾难性情况关键任务系统。因此,为了确保这种加速器的FUSA,本文通过改变多个详尽数据集的诱导误差的网络参数,位置和特征,提供了广泛的速度对DataPath中的故障暴露于故障的加速器的广泛的Fusa评估。此外,我们提出了两种新颖的策略,以获得一系列的功能测试模式,以检测DNN加速器中的Fusa违规。我们的实验结果表明,所获得的试验集可以平均达到92.63%(在某些情况下,高达100%)故障覆盖,基数为低至整个测试数据集的0.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号