首页> 外文期刊>IEEE Design & Test of Computers Magazine >Enabling Timing Error Resilience for Low-Power Systolic-Array Based Deep Learning Accelerators
【24h】

Enabling Timing Error Resilience for Low-Power Systolic-Array Based Deep Learning Accelerators

机译:基于低功耗的Systolic-阵列的深度学习加速器启用定时误差弹性

获取原文
获取原文并翻译 | 示例

摘要

Hardware-accelerated learning and inference algorithms are quite popular in edge devices where predictable timing behavior and minimal energy consumption are required, while maintaining robustness to timing errors. To achieve this, dynamic voltage scaling techniques have been utilized in several accelerators. Therefore, this article presents Thundervolt, a framework allowing adaptive aggressive voltage underscaling while maintaining the robustness (reliability, predictability, performance) of such accelerators. -Theocharis Theocharides, University of Cyprus -Muhammad Shafique, Technische Universitat Wien
机译:硬件加速的学习和推理算法在边缘设备中非常流行,其中需要可预测的定时行为和最小的能量消耗,同时保持对定时错误的鲁棒性。为此,已经在几种加速器中使用了动态电压缩放技术。因此,本文介绍了雷电,框架允许自适应侵蚀电压下划线,同时保持这种加速器的鲁棒性(可靠性,可预测性,性能)。 - 塞浦路斯大学 - 穆罕默德Shafique,Technische大学大学

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号