首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Sensitivity-Based Error Resilient Techniques With Heterogeneous Multiply–Accumulate Unit for Voltage Scalable Deep Neural Network Accelerators
【24h】

Sensitivity-Based Error Resilient Techniques With Heterogeneous Multiply–Accumulate Unit for Voltage Scalable Deep Neural Network Accelerators

机译:电压可扩展深度神经网络加速器的基于异构的乘积累加单元的基于灵敏度的误差恢复技术

获取原文
获取原文并翻译 | 示例

摘要

With inherent algorithmic error resilience of deep neural networks (DNNs), supply voltage scaling could be a promising technique for energy efficient DNN accelerator design. In this paper, we present an error resilient technique to enable aggressive voltage scaling by exploiting the asymmetric error resilience (sensitivity) with respect to DNN layers, filters, and channels. First-order Taylor expansion is used to evaluate the filter/channel-level weight sensitivities of large scale DNNs which accurately approximates weight sensitivities from actual error injection simulations. We also present the heterogeneous multiply-accumulate (MAC) unit based design approach where some of the MAC units are designed larger with shorter critical path delays for robustness to aggressive voltage scaling while other MAC units are designed relatively smaller. The sensitivity variations among filter weights can be leveraged to design DNN accelerator such that the computations with more sensitive weights are assigned to more robust (larger) MAC units while the computations with less sensitive weights are assigned to less robust (smaller) MAC units. Using dynamic programming, the sizes of MAC units are selected to achieve best DNN accuracy under ISO area constraint. As a result, the proposed voltage scalable DNN accelerator can achieve 34% energy savings in post layout simulations using 65 nm CMOS process with ImageNet dataset using ResNet-18 compared to state-of-the-art timing error recovery technique.
机译:借助深层神经网络(DNN)固有的算法错误恢复能力,电源电压缩放可以成为节能DNN加速器设计的一项有前途的技术。在本文中,我们提出了一种误差弹性技术,通过利用DNN层,滤波器和通道的非对称误差弹性(灵敏度)来实现主动的电压缩放。一阶泰勒展开用于评估大型DNN的滤波器/通道级权重灵敏度,该精度可根据实际的误差注入仿真准确地逼近权重灵敏度。我们还提出了一种基于异构乘法累加(MAC)单元的设计方法,其中一些MAC单元设计得较大,具有较短的关键路径延迟,以增强对激进电压缩放的鲁棒性,而其他MAC单元则设计得相对较小。可以利用滤波器​​权重之间的灵敏度差异来设计DNN加速器,以便将具有较高敏感权重的计算分配给更健壮(较大)的MAC单元,而将具有较低敏感权重的计算分配给较不健壮的(较小)MAC单元。使用动态编程,可以选择MAC单元的大小,以在ISO区域约束下获得最佳DNN精度。结果,与最新的时序误差恢复技术相比,在采用ResNet-18的ImageNet数据集和65nm CMOS工艺的情况下,提出的电压可扩展DNN加速器可以在后期布局仿真中实现34%的能源节省。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号