首页> 中文期刊> 《电信工程技术与标准化》 >基于双层异构深度神经网络模型的人脸识别关键技术研究

基于双层异构深度神经网络模型的人脸识别关键技术研究

     

摘要

伴随着人工智能的快速发展,人脸识别技术在社会领域和工业领域都呈现出较广泛的应用潜力空间,但由于传统人脸识别技术识别率低,识别速度慢,对环境要求非常高,迫切需要革新方法.本文旨在研究如何将深度学习算法引入人脸识别领域,通过构建双层异构深度神经网络模型,模拟神经网络进行学习,使用CNN与DBN等众多模型让计算机逐渐根据大量数据特征学会识别图像与人脸,并对人脸识别领域关键技术难点进行深入研究,从而大幅度提升人脸识别技术的识别率与鲁棒性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号