首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Always-On 674μ W@4GOP/s Error Resilient Binary Neural Networks With Aggressive SRAM Voltage Scaling on a 22-nm IoT End-Node
【24h】

Always-On 674μ W@4GOP/s Error Resilient Binary Neural Networks With Aggressive SRAM Voltage Scaling on a 22-nm IoT End-Node

机译:始终开启674μW@ 4GOP / S误差弹性二进制神经网络,在22-NM IOT结束节点上具有激进的SRAM电压缩放

获取原文
获取原文并翻译 | 示例

摘要

Binary Neural Networks (BNNs) have been shown to be robust to random bit-level noise, making aggressive voltage scaling attractive as a power-saving technique for both logic and SRAMs. In this work, we introduce the first fully programmable IoT end-node system-on-chip (SoC) capable of executing software-defined, hardware-accelerated BNNs at ultra-low voltage. Our SoC exploits a hybrid memory scheme where error-vulnerable SRAMs are complemented by reliable standard-cell memories to safely store critical data under aggressive voltage scaling. On a prototype in 22nm FDX technology, we demonstrate that both the logic and SRAM voltage can be dropped to 0.5V without any accuracy penalty on a BNN trained for the CIFAR-10 dataset, improving energy efficiency by 2.2X w.r.t. nominal conditions. Furthermore, we show that the supply voltage can be dropped to 0.42V (50% of nominal) while keeping more than 99% of the nominal accuracy (with a bit error rate ~1/1000). In this operating point, our prototype performs 4Gop/s (15.4 Inference/s on the CIFAR-10 dataset) by computing up to 13 binary ops per pJ, achieving 22.8 Inference/s/mW while keeping within a peak power envelope of 674uW – low enough to enable always-on operation in ultra-low power smart cameras, long-lifetime environmental sensors, and insect-sized pico-drones.
机译:已显示二进制神经网络(BNN)对随机比特级噪声具有鲁棒性,使攻击性电压缩放作为逻辑和SRAM的节电技术具有吸引力。在这项工作中,我们介绍了能够在超低电压下执行软件定义的硬件加速的BNN的第一个完全可编程的物联网端节点系统上(SOC)。我们的SOC利用混合内存方案,其中通过可靠的标准单元存储器补充错误易受攻击的SRAM,以在积极的电压缩放下安全地存储关键数据。在22nm FDX技术中的原型上,我们证明逻辑和SRAM电压都可以降至0.5V,而在为CIFAR-10数据集接受过的BNN培训的BNN,通过2.2倍W.R.T提高能量效率。名义条件。此外,我们表明,电源电压可以落到0.42V(50%的名义),同时保持超过99%的标称精度(误码率〜1/1000)。在此操作点中,我们的原型通过计算每PJ最多13个二进制OPS,实现22.8推理/ S / MW在674UW的峰值电源包络内计算22.8推理/ S / MW进行4GOP / S(15.4推动/秒)。足够低,以便在超低功耗智能摄像机,长寿命环境传感器和昆虫大小的微型玻璃器皿中实现始终开启操作。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号