首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Error Tolerance Analysis of Deep Learning Hardware Using a Restricted Boltzmann Machine Toward Low-Power Memory Implementation
【24h】

Error Tolerance Analysis of Deep Learning Hardware Using a Restricted Boltzmann Machine Toward Low-Power Memory Implementation

机译:使用受限Boltzmann机器实现低功耗内存的深度学习硬件的容错分析

获取原文
获取原文并翻译 | 示例

摘要

Remarkable hardware robustness of deep learning (DL) is revealed by error injection analyses performed using a custom hardware model implementing parallelized restricted Boltzmann machines (RBMs). RBMs in deep belief networks demonstrate robustness against memory errors during and after learning. Fine-tuning significantly affects the recovery of accuracy for static errors injected to the structural data of RBMs. The memory error tolerance is observable using our hardware networks with fine-graded memory distribution, resulting in reliable DL hardware with low-voltage driven memory suitable to low-power applications.
机译:通过使用实现并行化受限Boltzmann机器(RBM)的自定义硬件模型执行的错误注入分析,揭示了深度学习(DL)的出色硬件鲁棒性。深度信念网络中的RBM在学习过程中和学习之后表现出针对记忆错误的鲁棒性。微调显着影响注入到RBM结构数据中的静态错误的准确性恢复。使用我们的硬件网络以及良好的内存分布可以观察到内存的容错性能,从而产生了可靠的DL硬件,其中配备了低压驱动的内存,适用于低功耗应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号