机译:使用受限Boltzmann机器实现低功耗内存的深度学习硬件的容错分析
Microelectronic Systems Laboratory, Advanced LSI Technology Laboratory, Swiss Federal Institute of Technology (EPFL), Toshiba Corporation, Lausanne, Kawasaki, SwitzerlandJapan;
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan;
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan;
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan;
Microelectronic Systems Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland;
Advanced LSI Technology Laboratory, Toshiba Corporation, Kawasaki, Japan;
Advanced LSI Technology Laboratory, Toshiba Corporation, Kawasaki, Japan;
Advanced LSI Technology Laboratory, Toshiba Corporation, Kawasaki, Japan;
Circuit faults; Hardware; Field programmable gate arrays; Computer architecture; Machine learning; Robustness; Data models;
机译:深度置信网络中面向硬件的受限Boltzmann机器的鲁棒性,可实现可靠的处理
机译:GeCo:片上半监督学习和贝叶斯推理的受限分类玻尔兹曼机器硬件
机译:使用忆阻器对硬件受限的Boltzmann机器进行可靠的本地学习
机译:深度信任网络中受限制的Boltzmann机器的可扩展和高度并行架构的内存错误容限
机译:在Clojure中使用受限的Boltzmann机器实现深度信任网络。
机译:在健康社交网络中用于人类行为预测的深度学习方法及其解释:社交受限玻尔兹曼机(SRBM +)
机译:深度信仰网络中硬件导向的限制Boltzmann机器的鲁棒性,以获得可靠的处理