首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Heterogeneous Mixed-Signal Monolithic 3-D In-Memory Computing Using Resistive RAM
【24h】

Heterogeneous Mixed-Signal Monolithic 3-D In-Memory Computing Using Resistive RAM

机译:异质混合信号单片3-D使用电阻RAM的内存计算

获取原文
获取原文并翻译 | 示例

摘要

Resistive random access memory (RRAM)-based compute-in-memory architecture helps overcome the bottleneck caused by large memory transactions in the convolutional neural network (CNN) accelerators. However, their deployment using 2-D IC technology faces challenges, as today's RRAM cells remain at legacy nodes above 20 nm due to high programming voltages. Besides, power-hungry analog-to-digital converter (ADC) units limit the throughput of RRAM accelerators. In this article, we present the first-ever heterogeneous (multiple technology nodes) mixed-signal monolithic 3-D IC designs of the RRAM CNN accelerator. Our RRAM remains at legacy 40-nm nodes in one tier, but CMOS periphery scales toward advanced 28/16 nm in another tier. Our 3-D designs overcome the bottleneck caused by ADCs and offer up to 4.9x improvement in energy efficiency in TOPS/W and up to 50% reduction in footprint area over 40-nm 2-D IC designs. Compared with existing 2-D works, our 3-D architecture offers up to 28.6x improvement in energy efficiency.
机译:基于电阻随机存取存储器(RRAM)基础的计算内存架构有助于克服卷积神经网络(CNN)加速器中的大型内存交易引起的瓶颈。但是,由于高于预编程电压,他们使用2-D IC技术面临挑战的部署,因为由于高编程电压,今天的RRAM单元仍然是20nm以上的传统节点。此外,磁力耗电的模数转换器(ADC)单位限制了RRAM加速器的吞吐量。在本文中,我们介绍了RRAM CNN加速器的第一次异构(多种技术节点)混合信号单整体3-D IC设计。我们的RRAM在一级中留在旧版40-NM节点中,但CMOS外围缩小在另一层中的高级28/16nm。我们的3-D设计克服了ADC引起的瓶颈,高达4.9倍的高度为4.9倍的高度,高达40-Nm 2-D IC设计的占地面积降低高达50%。与现有的2-D工作相比,我们的3-D架构提供高达28.6倍的能效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号