首页> 外文期刊>Solid-State Circuits, IEEE Journal of >Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration
【24h】

Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration

机译:利用碳纳米管FET,电阻RAM及其单片3D集成的超尺寸计算

获取原文
获取原文并翻译 | 示例

摘要

The field of machine learning is witnessing rapid advances along several fronts: new machine learning models, new machine learning algorithms utilizing these models, new hardware architectures for these algorithms, and new technologies for creating energy-efficient implementations of such hardware architectures. Hyperdimensional (HD) computing represents one such model. Emerging nanotechnologies, such as carbon nanotube field-effect transistors (CNFETs), resistive random-access memory (RRAM), and their monolithic 3D integration, enable energyand area-efficient hardware implementations of HD computing architectures. Such efficient implementations are achieved by exploiting several characteristics of the component nanotechnologies (e.g., energy-efficient logic circuits, dense memory, and incrementers naturally enabled by gradual reset of RRAM cells) and their monolithic 3D integration (enabling tight integration of logic and memory), as well as various characteristics of the HD computing model (e.g., embracing randomness that allows us to utilize rather than avoid inherent variations in RRAM and CNFETs, resilience to errors in the underlying hardware). We experimentally demonstrate and characterize an end-to-end HD computing nanosystem built using monolithic 3D integration of CNFETs and RRAM. Using our nanosystem, we experimentally demonstrate the pairwise classification of 21 languages with measured mean accuracy of up to 98% on 20000 sentences (6.4 million characters), training using one text sample (~100000 characters) per language, and resilient operation (98% accuracy) despite 78% of bits in HD representation being stuck at 0 or 1 in hardware. We also show that the monolithic 3D implementations of HD computing can have 35× improved energy-execution time product for training and inference of language classification data sets (while using 3× less area) compared to silicon CMOS implementations.
机译:机器学习领域正见证着几个方面的飞速发展:新的机器学习模型,使用这些模型的新机器学习算法,用于这些算法的新硬件架构以及用于创建此类硬件架构的节能实现的新技术。超维(HD)计算代表了这样一种模型。新兴的纳米技术,例如碳纳米管场效应晶体管(CNFET),电阻式随机存取存储器(RRAM)及其单片3D集成,可实现高清计算架构的节能和面积高效的硬件实现。通过利用组件纳米技术的几个特征(例如,节能逻辑电路,密集存储器和通过逐步重置RRAM单元自然启用的增量器)及其单片3D集成(实现逻辑和存储器的紧密集成),可以实现这种有效的实现。以及高清计算模型的各种特征(例如,拥抱随机性使我们能够利用而不是避免RRAM和CNFET的固有变化,对底层硬件错误的适应性)。我们通过实验演示并表征了使用CNFET和RRAM的单片3D集成构建的端到端高清计算纳米系统。使用我们的纳米系统,我们通过实验证明了21种语言的成对分类,在20000个句子(640万个字符)上测得的平均准确度高达98%,使用每种语言使用一个文本样本进行训练(〜100000个字符),并且具有弹性操作能力(尽管HD表示中有78%的位在硬件中停留在0或1,但精度还是98%。我们还显示,与硅CMOS实施方案相比,高清计算的单片3D实施方案可以训练和推断语言分类数据集(同时使用的面积减少3倍),从而使能源执行时间乘积提高了35倍。

著录项

  • 来源
    《Solid-State Circuits, IEEE Journal of》 |2018年第11期|3183-3196|共14页
  • 作者单位

    Department of Electrical Engineering, Stanford University, Stanford, CA, USA;

    Department of Electrical Engineering, Stanford University, Stanford, CA, USA;

    Qualcomm, San Jose, CA, USA;

    Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland;

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA;

    Department of Electrical Engineering, Stanford University, Stanford, CA, USA;

    Department of Electrical Engineering, Stanford University, Stanford, CA, USA;

    Department of Electrical Engineering and Computing Sciences, University of California at Berkeley, Berkeley, CA, USA;

    Department of Electrical Engineering, Stanford University, Stanford, CA, USA;

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA;

    Department of Electrical Engineering, Stanford University, Stanford, CA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CNTFETs; Three-dimensional displays; Computational modeling; Hardware; Training; Electrical engineering;

    机译:CNTFETs;三维显示器;计算模型;硬件;培训;电气工程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号