首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Analysis of a Pipelined Architecture for Sparse DNNs on Embedded Systems
【24h】

Analysis of a Pipelined Architecture for Sparse DNNs on Embedded Systems

机译:嵌入式系统稀疏DNN的流水线架构分析

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks (DNNs) are increasing their presence in a wide range of applications, and their computationally intensive and memory-demanding nature poses challenges, especially for embedded systems. Pruning techniques turn DNN models into sparse by setting most weights to zero, offering optimization opportunities if specific support is included. We propose a novel pipelined architecture for DNNs that avoids all useless operations during the inference process. It has been implemented in a field-programmable gate array (FPGA), and the performance, energy efficiency, and area have been characterized. Exploiting sparsity yields remarkable speedups but also produces area overheads. We have evaluated this tradeoff in order to identify in which scenarios it is better to use that area to exploit sparsity, or to include more computational resources in a conventional DNN architecture. We have also explored different arithmetic bitwidths. Our sparse architecture is clearly superior on 32-bit arithmetic or highly sparse networks. However, on 8-bit arithmetic or networks with low sparsity it is more profitable to deploy a dense architecture with more arithmetic resources than including support for sparsity. We consider that FPGAs are the natural target for DNN sparse accelerators since they can be loaded at run-time with the best-fitting accelerator.
机译:深度神经网络(DNN)正在增加其在广泛的应用中的存在,以及他们的计算密集型和记忆苛刻的性质构成挑战,特别是对于嵌入式系统。修剪技术通过将大多数重量设置为零,将DNN模型变为稀疏,如果包括特定支持,则提供优化机会。我们提出了一种用于DNN的新型流水线架构,可避免推理过程中的所有无用操作。它已经在现场可编程门阵列(FPGA)中实现,并且表征了性能,能量效率和区域。利用稀疏性产生了显着的加速,但也产生了区域开销。我们已经评估了该权衡,以确定在哪种情况下,最好使用该区域利用稀疏性,或者在传统的DNN架构中包括更多计算资源。我们还探索了不同的算术比特宽度。我们的稀疏架构在32位算术或高度稀疏的网络上显然优于优越。然而,在具有低稀疏性的8位算术或网络上,可以使用更多算术资源部署密集的架构更有利可图,而不是包括对稀疏性的支持。我们认为FPGA是DNN稀疏加速器的自然目标,因为它们可以用最合适的加速器装载在运行时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号