首页> 外文期刊>Knowledge-Based Systems >AutoEmbedder: A semi-supervised DNN embedding system for clustering
【24h】

AutoEmbedder: A semi-supervised DNN embedding system for clustering

机译:AutoeMbedder:用于聚类的半监控DNN嵌入系统

获取原文
获取原文并翻译 | 示例

摘要

Clustering is widely used in unsupervised learning method that deals with unlabeled data. Deep clustering has become a popular study area that relates clustering with Deep Neural Network (DNN) architecture. Deep clustering method downsamples high dimensional data, which may also relate clustering loss. Deep clustering is also introduced in semi-supervised learning (SSL). Most SSL methods depend on pairwise constraint information, which is a matrix containing knowledge if data pairs can be in the same cluster or not. This paper introduces a novel embedding system named AutoEmbedder, that downsamples higher dimensional data to clusterable embedding points. To the best of our knowledge, this is the first research endeavor that relates to traditional classifier DNN architecture with a pairwise loss reduction technique. The training process is semi-supervised and uses Siamese network architecture to compute pairwise constraint loss in the feature learning phase. The AutoEmbedder outperforms most of the existing DNN based semi-supervised methods tested on famous datasets. (C) 2020 Elsevier B.V. All rights reserved.
机译:群集广泛用于涉及未标记数据的无监督学习方法。深度聚类已成为一个流行的研究区,与深层神经网络(DNN)架构相关联。深度聚类方法下沿高维数据,也可以涉及聚类损耗。深度集群也在半监督学习(SSL)中引入。大多数SSL方法取决于成对约束信息,如果数据对可以在同一群集中,则是包含知识的矩阵。本文介绍了一个名为AutoEmbedder的新型嵌入系统,该系统将更高的维度数据下载到群集嵌入点。据我们所知,这是第一次研究努力,与传统分类器DNN架构有着成对丢失减少技术。培训过程是半监督的,并使用暹罗网络架构来计算特征学习阶段的成对约束损失。 AutoEmbedder优于在着名数据集上测试的大多数基于DNN的半监督方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号