首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Cellular-array modular multiplier for fast RSA public-key cryptosystem based on modified Booth's algorithm
【24h】

Cellular-array modular multiplier for fast RSA public-key cryptosystem based on modified Booth's algorithm

机译:基于改进的Booth算法的快速RSA公钥密码系统的单元阵列模块化乘法器

获取原文
获取原文并翻译 | 示例

摘要

We propose a radix-4 modular multiplication algorithm based on Montgomery's algorithm, and a fast radix-4 modular exponentiation algorithm for Rivest, Shamir, and Adleman (RSA) public-key cryptosystem. By modifying Booth's algorithm, a radix-4 cellular-array modular multiplier has been designed and simulated. The radix-4 modular multiplier can be used to implement the RSA cryptosystem. Due to reduced number of iterations and pipelining, our modular multiplier is four times faster than a direct radix-2 implementation of Montgomery's algorithm. The time to calculate a modular exponentiation is about n2 clock cycles, where n is the word length, and the clock cycle is roughly the delay time of a full adder. The utilization of the array multiplier is 100% when we interleave consecutive exponentiations. Locality, regularity, and modularity make the proposed architecture suitable for very large scale integration implementation. High-radix modular-array multipliers are also discussed, at both the bit level and digit level. Our analysis shows that, in terms of area-time product, the radix-4 modular multiplier is the best choice.
机译:我们提出了一种基于Montgomery算法的radix-4模块化乘法算法,以及一种针对Rivest,Shamir和Adleman(RSA)公钥密码系统的快速radix-4模块化乘幂算法。通过修改Booth的算法,已设计并模拟了基数为4的蜂窝阵列模块化乘法器。 radix-4模块化乘法器可用于实现RSA密码系统。由于减少了迭代次数和流水线操作,因此我们的模块化乘法器比Montgomery算法的直接基数2实现快四倍。计算模幂的时间约为n2个时钟周期,其中n是字长,而时钟周期大约是一个完整加法器的延迟时间。当我们交织连续的指数时,数组乘法器的利用率为100%。局部性,规则性和模块化使所提出的体系结构适合于大规模集成实施。还讨论了高基数模块化阵列乘法器,无论是位级还是位级。我们的分析表明,就时域乘积而言,radix-4模块化乘法器是最佳选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号