首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Device-Aware Yield-Centric Dual-Vt Design Under Parameter Variations in Nanoscale Technologies
【24h】

Device-Aware Yield-Centric Dual-Vt Design Under Parameter Variations in Nanoscale Technologies

机译:纳米技术中参数变化下以设备为中心的以收益为中心的双Vt设计

获取原文
获取原文并翻译 | 示例

摘要

Dual-Vt design technique has proven to be extremely effective in reducing subthreshold leakage in both active and standby mode of operation of a circuit in submicrometer technologies. However, aggressive scaling of technology results in different leakage components (subthreshold, gate and junction tunneling) to become significant portion of total power dissipation in CMOS circuits. High-Vt devices are expected to have high junction tunneling current (due to stronger halo doping) compared to low-Vt devices, which in the worst case can increase the total leakage in dual-Vt design. Moreover, process parameter variations (and in turn Vt variations) are expected to be significantly high in sub-50-nm technology regime, which can severely affect the yield. In this paper, we propose a device aware simultaneous sizing and dual-Vt design methodology that considers each component of leakage and the impact of process variation (on both delay and leakage power) to minimize the total leakage while ensuring a target yield. Our results show that conventional dual-Vt design can overestimate leakage savings by 36% while incurring 17% average yield loss in 50-nm predictive technology. The proposed scheme results in 10%-20% extra leakage power savings compared to conventional dual-Vt design, while ensuring target yield. This paper also shows that nonscalability of the present way of realizing high-Vt devices results in negligible power savings beyond 25-nm technology. Hence, different dual-Vt process options, such as metal gate work function engineering, are required to realize high-performance and low-leakage dual-Vt designs in future technologies.
机译:事实证明,在亚微米技术中,双Vt设计技术在降低电路的活动和待机工作模式下的亚阈值泄漏方面极为有效。但是,积极的技术扩展会导致不同的泄漏成分(亚阈值,栅极和结隧穿)成为CMOS电路总功耗的重要部分。与低Vt器件相比,高Vt器件有望具有较高的结隧穿电流(由于增强的晕圈掺杂),这在最坏的情况下会增加双Vt设计中的总漏电流。此外,在低于50 nm的技术方案中,工艺参数的变化(以及Vt的变化)预计会非常高,这会严重影响成品率。在本文中,我们提出了一种设备感知的同时调整尺寸和双重Vt设计方法,该方法考虑了泄漏的每个组成部分以及工艺变化的影响(对延迟和泄漏功率的影响),以最大程度地减少总泄漏,同时确保目标产量。我们的结果表明,传统的双Vt设计在50 nm预测技术中可高估泄漏节省量达36%,而平均成品率损失则为17%。与传统的双Vt设计相比,该方案可节省10%-20%的额外泄漏功率,同时确保目标产量。本文还表明,目前实现高Vt器件方法的不可扩展性导致25纳米技术以外的功耗节省可忽略不计。因此,为了在未来的技术中实现高性能和低泄漏的双Vt设计,需要采用不同的双Vt工艺选项,例如金属栅极功函数工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号