首页> 美国卫生研究院文献>Biomolecules >The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties
【2h】

The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties

机译:分支细胞对称性和其他关键纳米级设计参数在确定树枝状大分子包封性能中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.
机译:本文回顾了过去三十年中与树状大分子,支化细胞对称性在先进药物递送系统,水性增容剂/增溶剂/赋形剂和纳米金属簇催化剂的开发中的作用有关的进展。从历史上看,它始于Tomalia Group(即Dow Chemical Co.)早期未曾报道的工作,揭示了所有已知的树枝状大分子家族类型都可以分为两个主要的对称类别。即:I类:具有内部空心度/孔隙度的对称分支细胞树状聚合物(例如Tomalia,Vögtle,Newkome型树状聚合物); II类:不具有内部空隙空间的不对称分支细胞树状聚合物(例如Denkewalter型)。这两个分支细胞的对称特征显示出在指导内部堆积模式方面的关键作用。因此,区分关键的树枝状聚合物的特性,例如密度,折射率和内部孔隙率。此外,这一发现为仅针对类别I而非类别II观察到的单分子胶束封装(UME)行为提供了解释。此帐户调查了早期实验,证实了树状大分子分支细胞对称性对内部包装性能有着不可分割的影响,基于类别(I)的UME行为的第一个例子,用于系统封装表征的核磁共振(NMR)协议,将这些原理应用于溶剂的增溶积极批准的药物,工程化的树状聚合物关键纳米级设计参数(CNDP),以优化性能,并对基于树状聚合物的增溶原理在新兴生命科学,药物输送和纳米医学应用中的预期作用高度乐观。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号