首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Minimum Supply Voltage and Yield Estimation for Large SRAMs Under Parametric Variations
【24h】

Minimum Supply Voltage and Yield Estimation for Large SRAMs Under Parametric Variations

机译:参数变化下大型SRAM的最小电源电压和良率估算

获取原文
获取原文并翻译 | 示例

摘要

SRAM cell minimum operation voltage (Vmin) exhibits a skewed distribution in the presence of random parametric variations. Standard Monte Carlo (MC) simulation is prohibitively expensive to estimate the tail of the Vmin distribution for large SRAMs. We propose a fast and accurate method to estimate Vmin based on the statistical trend of static noise margin with ${V}_{rm DD}$ scaling. Our preliminary work has shown its efficiency for standby Vmin estimation. In this work, we extend the method to estimate read and write Vmin and yield. We also generalize it for both symmetric and asymmetric types of cells. With comparable accuracy, the proposed model offers a huge speedup over standard MC. Compared with an alternative fast MC method, importance sampling, it shows a good agreement with less complexity.
机译:在存在随机参数变化的情况下,SRAM单元的最小工作电压(Vmin)呈现偏斜分布。对于大型SRAM,标准的蒙特卡罗(MC)仿真对于估算Vmin分布的尾部非常昂贵。我们提出了一种快速准确的方法,根据静态噪声容限的统计趋势以$ {V} _ {rm DD} $缩放比例来估算Vm​​in。我们的初步工作显示了其在待机Vmin估计中的效率。在这项工作中,我们扩展了方法来估计读写Vmin和产量。我们还将其归纳为对称和非对称类型的单元格。提出的模型具有相当的精度,与标准MC相比,可提供巨大的加速。与替代性快速MC方法重要性抽样相比,它显示出良好的一致性,且复杂度更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号