首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Systematic Design of RSA Processors Based on High-Radix Montgomery Multipliers
【24h】

Systematic Design of RSA Processors Based on High-Radix Montgomery Multipliers

机译:基于高基蒙哥马利乘法器的RSA处理器的系统设计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a systematic design approach to provide the optimized Rivest–Shamir–Adleman (RSA) processors based on high-radix Montgomery multipliers satisfying various user requirements, such as circuit area, operating time, and resistance against side-channel attacks. In order to involve the tradeoff between the performance and the resistance, we apply four types of exponentiation algorithms: two variants of the binary method with/without Chinese Remainder Theorem (CRT). We also introduces three multiplier-based datapath-architectures using different intermediate data forms: 1) single form, 2) semi carry-save form, and 3) carry-save form, and combined them with a wide variety of arithmetic components. Their radices are parameterized from $2^{8}$ to $2^{128}$. A total of 242 datapaths for 1024-bit RSA processors were obtained for each radix. The potential of the proposed approach is demonstrated through an experimental synthesis of all possible processors with a 90-nm CMOS standard cell library. As a result, the smallest design of 861 gates with 118.47 ms/RSA to the fastest design of 0.67 ms/RSA at 153$thinspace$ 862 gates were obtained. In addition, the use of the CRT technique reduced the RSA operation time of the fastest design to 0.24 ms. Even if we employed the exponentiation algorithm resistant to typical side-channel attacks, the fastest design can perform the RSA operation in less than 1.0 ms.
机译:本文提出了一种系统设计方法,该方法基于高基数蒙哥马利乘法器来提供优化的Rivest–Shamir–Adleman(RSA)处理器,以满足各种用户需求,例如电路面积,工作时间和对旁通道攻击的抵抗力。为了在性能和阻力之间进行权衡,我们应用了四种类型的求幂算法:具有/不具有中国余数定理(CRT)的二进制方法的两个变体。我们还介绍了三种使用不同中间数据形式的基于乘数的数据路径体系结构:1)单形式,2)半进位保存形式和3)进位保存形式,并将它们与各种算术组件结合在一起。它们的半径从 $ 2 ^ {8} $ $ 2 ^ {128} $ 。对于每个基数,总共获得了1024位RSA处理器的242条数据路径。通过对90nm CMOS标准单元库中所有可能的处理器进行实验综合,证明了该方法的潜力。结果,在153 $ thinspace $ <时,最小的861个门的设计速度为118.47 ms / RSA,而最快的设计为0.67 ms / RSA。 /式>获得862个门。此外,CRT技术的使用将最快设计的RSA操作时间减少到0.24 ms。即使我们采用了抵抗典型边信道攻击的幂运算算法,最快的设计也可以在不到1.0 ms的时间内执行RSA操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号