首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Clamping Virtual Supply Voltage of Power-Gated Circuits for Active Leakage Reduction and Gate-Oxide Reliability
【24h】

Clamping Virtual Supply Voltage of Power-Gated Circuits for Active Leakage Reduction and Gate-Oxide Reliability

机译:钳位电源门电路的虚拟电源电压,以主动降低泄漏并确保栅极氧化物的可靠性

获取原文
获取原文并翻译 | 示例

摘要

In an integrated circuit (IC) adopting a power-gating (PG) technique, the virtual supply voltage (VVDD) is susceptible to: 1) negative-bias temperature instability (NBTI) degradation that weakens the PG device over time and 2) temporal temperature variation that affects active leakage current (thus total current) of the IC. The PG device is sized to guarantee a minimum VVDD level over the chip lifetime. Thus, the NBTI degradation and the worst-case total current at high-temperature must be considered for sizing the PG device. This leads to higher VVDD (thus active leakage power) than necessary in early chip lifetime and/or at low temperature, negatively impacting the gate-oxide reliability of transistors. To reduce active leakage power increase and improve the gate-oxide reliability due to these effects, we propose two techniques that adjust the strength of a PG device based on its usage and IC's temperature at runtime. We demonstrate the efficacy of these techniques with an experimental setup using a 32-nm technology model in the presence of within-die spatial process and temperature variations. On an average of 100 die samples, they can reduce dynamic and active leakage power by up to 3.7% and 10% in early chip lifetime. Finally, these techniques also reduce the oxide failure rate by up to 5% across process corners over a period of 7 years.
机译:在采用电源门控(PG)技术的集成电路(IC)中,虚拟电源电压(VVDD)容易受到以下因素的影响:1)负偏置温度不稳定性(NBTI)退化会随着时间的推移削弱PG器件; 2)暂时的温度变化会影响IC的有源泄漏电流(因此是总电流)。 PG器件的尺寸应确保在整个芯片寿命内保持最小VVDD电平。因此,为确定PG器件的尺寸,必须考虑NBTI退化和高温下最坏情况下的总电流。这导致了比早期芯片寿命和/或低温下更高的VVDD(因此,有效泄漏功率),对晶体管的栅极氧化物可靠性产生了负面影响。为了减少由于这些效应引起的有源泄漏功率的增加并提高栅极氧化物的可靠性,我们提出了两种技术,这些技术可根据PG器件的使用情况和运行时IC的温度来调节其强度。我们在存在模内空间过程和温度变化的情况下,通过使用32纳米技术模型的实验装置论证了这些技术的功效。平均而言,它们可以减少100个管芯样品的动态和有源泄漏功率,从而使早期芯片寿命分别降低3.7%和10%。最后,这些技术还可以在7年内使各个工艺角落的氧化物故障率降低多达5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号