首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >STT-RAM Buffer Design for Precision-Tunable General-Purpose Neural Network Accelerator
【24h】

STT-RAM Buffer Design for Precision-Tunable General-Purpose Neural Network Accelerator

机译:精确可调通用神经网络加速器的STT-RAM缓冲区设计

获取原文
获取原文并翻译 | 示例

摘要

Multilevel spin toque transfer RAM (STT-RAM) is a suitable storage device for energy-efficient neural network accelerators (NNAs), which relies on large-capacity on-chip memory to support brain-inspired large-scale learning models from conventional artificial neural networks to current popular deep convolutional neural networks. In this paper, we investigate the application of multilevel STT-RAM to general-purpose NNAs. First, the error-resilience feature of neural networks is leveraged to tolerate the read/write reliability issue in multilevel cell STT-RAM using approximate computing. The induced read/write failures at the expense of higher storage density can be effectively masked by a wide spectrum of NN applications with intrinsic forgiveness. Second, we present a precision-tunable STT-RAM buffer for the popular general-purpose NNA. The targeted STT-RAM memory design is able to transform between multiple working modes and adaptable to meet the varying quality constraint of approximate applications. Lastly, the reconfigurable STT-RAM buffer not only enables precision scaling in NNA but also provides adaptiveness to the demand for different learning models with distinct working-set sizes. Particularly, we demonstrate the concept of capacity/precision-tunable STT-RAM memory with the emerging reconfigurable deep NNA and elaborate on the data mapping and storage mode switching policy in STT-RAM memory to achieve the best energy efficiency of approximate computing.
机译:多级旋转转矩传输RAM(STT-RAM)是适用于节能神经网络加速器(NNA)的合适存储设备,它依靠大容量的片上存储器来支持传统人工神经的脑启发式大规模学习模型网络到当前流行的深度卷积神经网络。在本文中,我们研究了多层STT-RAM在通用NNA中的应用。首先,利用近似计算,利用神经网络的容错功能来容忍多级单元STT-RAM中的读/写可靠性问题。可以以广泛的具有内在宽恕的NN应用程序有效地掩盖以较高存储密度为代价的诱发的读/写故障。其次,我们为流行的通用NNA提供了一种精确可调的STT-RAM缓冲器。面向目标的STT-RAM存储器设计能够在多种工作模式之间转换,并能够满足近似应用的不断变化的质量约束。最后,可重新配置的STT-RAM缓冲区不仅可以在NNA中实现精确缩放,而且还可以适应具有不同工作集大小的不同学习模型的需求。特别是,我们演示了具有新兴的可重配置深度NNA的容量/精确可调STT-RAM存储器的概念,并详细介绍了STT-RAM存储器中的数据映射和存储模式切换策略,以实现近似计算的最佳能效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号