首页> 外文期刊>User modeling and user-adapted interaction >Distributional semantic pre-filtering in context-aware recommender systems
【24h】

Distributional semantic pre-filtering in context-aware recommender systems

机译:上下文感知推荐系统中的分布式语义预过滤

获取原文
获取原文并翻译 | 示例

摘要

Context-aware recommender systems improve context-free recommenders by exploiting the knowledge of the contextual situation under which a user experienced and rated an item. They use data sets of contextually-tagged ratings to predict how the target user would evaluate (rate) an item in a given contextual situation, with the ultimate goal to recommend the items with the best estimated ratings. This paper describes and evaluates a pre-filtering approach to context-aware recommendation, called distributional-semantics pre-filtering (DSPF), which exploits in a novel way the distributional semantics of contextual conditions to build more precise context-aware rating prediction models. In DSPF, given a target contextual situation (of a target user), a matrix-factorization predictive model is built by using the ratings tagged with the contextual situations most similar to the target one. Then, this model is used to compute rating predictions and identify recommendations for that specific target contextual situation. In the proposed approach, the definition of the similarity of contextual situations is based on the distributional semantics of their composing conditions: situations are similar if they influence the user's ratings in a similar way. This notion of similarity has the advantage of being directly derived from the rating data; hence it does not require a context taxonomy. We analyze the effectiveness of DSPF varying the specific method used to compute the situation-to-situation similarity. We also show how DSPF can be further improved by using clustering techniques. Finally, we evaluate DSPF on several contextually-tagged data sets and demonstrate that it outperforms state-of-the-art context-aware approaches.
机译:上下文感知推荐器系统通过利用用户体验和评价项目的上下文情况的知识来改进无上下文推荐器。他们使用带有上下文标签的评分的数据集来预测目标用户在给定的上下文情况下将如何评估(评分)商品,最终目的是推荐具有最佳估算评分的商品。本文描述并评估了一种针对上下文感知推荐的预过滤方法,称为分布语义预过滤(DSPF),该方法以新颖的方式利用上下文条件的分布语义来构建更精确的上下文感知评级预测模型。在DSPF中,给定(目标用户的)目标上下文情况,通过使用贴有与目标对象最相似的上下文情况的等级来构建矩阵分解预测模型。然后,该模型用于计算收视率预测并针对该特定目标上下文情况识别建议。在提出的方法中,上下文情境相似性的定义基于其组成条件的分布语义:如果情境以相似的方式影响用户的评分,则情境相似。这种相似性概念的优点是可以直接从评级数据中得出。因此,它不需要上下文分类法。我们分析了DSPF的有效性,改变了用于计算情境与情境相似度的特定方法。我们还将展示如何通过使用聚类技术进一步改善DSPF。最后,我们在几个带有上下文标记的数据集上评估DSPF,并证明它优于最新的上下文感知方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号