首页> 外文期刊>User modeling and user-adapted interaction >Meta-User2Vec model for addressing the user and item cold-start problem in recommender systems
【24h】

Meta-User2Vec model for addressing the user and item cold-start problem in recommender systems

机译:Meta-User2VEC模型用于在推荐系统中寻址用户和项目冷启动问题

获取原文
获取原文并翻译 | 示例

摘要

The cold-start scenario is a critical problem for recommendation systems, especially in dynamically changing domains such as online news services. In this research, we aim at addressing the cold-start situation by adapting an unsupervised neural User2Vec method to represent new users and articles in a multidimensional space. Toward this goal, we propose an extension of the Doc2Vec model that is capable of representing users with unknown history by building embeddings of their metadata labels along with item representations. We evaluate our proposed approach with respect to different parameter configurations on three real-world recommendation datasets with different characteristics. Our results show that this approach may be applied as an efficient alternative to the factorization machine-based method when the user and item metadata are used and hence can be applied in the cold-start scenario for both new users and new items. Additionally, as our solution represents the user and item labels in the same vector space, we can analyze the spatial relations among these labels to reveal latent interest features of the audience groups as well as possible data biases and disparities.
机译:冷启动方案是推荐系统的关键问题,尤其是在动态改变在线新闻服务等领域。在这项研究中,我们的目的是通过调整无监督的神经Ust2VEC方法来代表多维空间中的新用户和文章来解决冷启动情况。对此目标,我们提出了DOC2VEC模型的扩展,该模型能够通过构建其元数据标签的嵌入以及项目表示来表示具有未知历史的用户。我们在具有不同特征的三个真实推荐数据集中的不同参数配置中评估了我们提出的方法。我们的结果表明,当使用用户和项目元数据时,这种方法可以作为基于因子基于机器的方法的有效替代方法应用,并且因此可以应用于新用户和新项目的冷启动方案。此外,由于我们的解决方案表示用户和项目标签,我们可以分析这些标签之间的空间关系,以揭示观众群体的潜在兴趣特征以及可能的数据偏差和差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号