首页> 外文期刊>User modeling and user-adapted interaction >Session-aware news recommendations using random walks on time-evolving heterogeneous information networks
【24h】

Session-aware news recommendations using random walks on time-evolving heterogeneous information networks

机译:会话感知新闻建议使用随机散步在时间演化的异构信息网络上

获取原文
获取原文并翻译 | 示例

摘要

Traditional news media Web sites usually provide generic recommendations that are not personalized to the preferences of their users. Typically, news recommendation algorithms mainly rely on the long-term preferences of users and do not adjust their model to the continuous stream of short-lived incoming stories to capture short-term intentions revealed by users' sessions. In this paper, we therefore study the problem of session-aware recommendations by running random walks on dynamic heterogeneous graphs. Concretely, we construct a heterogeneous information network consisting of users, news articles, news categories, locations and sessions. By using different (1) sliding time window sizes, (2) sub-graphs for model learning, (3) sequential article weighting strategies and (4) more diversified random walks, we perform recommendations in a second step. Our algorithm proposal is evaluated on three real-life data sets, and we demonstrate that our method outperforms state-of-the-art methods by delivering more accurate and diversified recommendations.
机译:传统新闻媒体网站通常提供与用户偏好的个人方式提供的通用建议。通常,新闻推荐算法主要依赖于用户的长期偏好,并不会将模型调整为连续的短期传入故事流,以捕获用户会话揭示的短期意图。在本文中,我们通过在动态异构图上运行随机散步来研究会话感知建议的问题。具体地,我们构建由用户,新闻文章,新闻类别,地点和会话组成的异构信息网络。通过使用不同(1)滑动时间窗口大小,(2)模型学习的子图,(3)顺序文章加权策略和(4)更多样化随机播放,我们在第二步中执行建议。我们的算法提案在三个现实生活数据集中进行了评估,我们证明我们的方法通过提供更准确和多样化的建议来优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号