首页> 外文期刊>Thin-Walled Structures >Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks
【24h】

Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks

机译:基于遗传算法和神经网络的铝空心管吸收车辆碰撞能量的多目标优化

获取原文
获取原文并翻译 | 示例

摘要

A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate their behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. A Multi-Objective Optimization of circular aluminum tubes undergoing axial compressive loading for vehicle crash energy absorption is performed for five crushing parameters using the weighted summation method. To improve the accuracy of the optimization process, artificial neural networks are used to reproduce the behavior of the crushing parameters in crush dynamics conditions. An explicit finite element method (FEM) is used to model and analyzed the behavior. A series of aluminum cylindrical tubes are simulated under axial impact condition for the experimental validation of the numerical solutions. A finite element code, capable of evaluating parameters crush, is prepared of which the outputs are used for training and testing the developed neural networks. In order to find the optimal solution, a genetic algorithm is implemented. With the purpose of illustrating optimum dimensional ratios, numerical results are presented for thin-walled circular aluminum AA6060-T5 and AA6060-T4 tubes. Multi-Objective Optimization of circular aluminum tubes has been performed in the basis of different priorities to create the ability for designer to select the optimum dimension ratio. Also, crush parameters of two aluminum alloys has been compared.
机译:进行了薄壁圆形铝管破碎的数值研究,以研究其在轴向冲击载荷下的行为。这些管通常用于汽车和火车结构中以吸收冲击能。使用加权求和方法对五个压碎参数进行承受轴向压缩载荷的圆形铝管的多目标优化,以吸收车辆的碰撞能量。为了提高优化过程的准确性,使用人工神经网络重现了破碎动力学条件下破碎参数的行为。使用显式有限元方法(FEM)对行为进行建模和分析。在轴向冲击条件下模拟了一系列铝圆柱管,以对数值解进行实验验证。准备了一个能够评估参数压溃的有限元代码,其输出用于训练和测试已开发的神经网络。为了找到最优解,实现了遗传算法。为了说明最佳的尺寸比,给出了薄壁圆形铝管AA6060-T5和AA6060-T4的数值结果。圆形铝管的多目标优化是在不同优先级的基础上进行的,以使设计人员能够选择最佳尺寸比例。而且,已经比较了两种铝合金的压溃参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号