首页> 外文期刊>Thin-Walled Structures >On the buckling of longitudinally stiffened plates, part 2: Eurocode-based design for plate-like behaviour of plates with closed-section stiffeners
【24h】

On the buckling of longitudinally stiffened plates, part 2: Eurocode-based design for plate-like behaviour of plates with closed-section stiffeners

机译:关于纵向加劲板的屈曲,第2部分:基于Eurocode的带有封闭截面加劲肋的板的板状性能设计

获取原文
获取原文并翻译 | 示例

摘要

Buckling resistance of longitudinally stiffened orthotropic plates is highly important in the design of steel bridges. The current calculation method of Part 1.5 of Eurocode 3 is based on the concept that the behaviour can be superposed from plate-like and column-like behaviours. Recent results indicate uncertainties in the application of the current method, e.g., if applied to plates with closed stiffeners. It is also known that the critical buckling stress is dependent on how it is calculated: by using a shell finite element model or by using the equations from Annex A of the relevant code part. The two calculation methods can lead to significant differences in the critical stress, which then mirrored in the resistance. Some results indicate that shell finite element calculation of the critical stresses can lead to resistance overestimation, especially when closed stiffeners are used. However, the reasons of the differences between the numerically and analytically calculated critical stresses are not yet fully clarified. Therefore, in the current paper the elastic critical buckling stress and buckling resistance of longitudinally stiffened plates are discussed. The paper presents the results of an extensive numerical research program focusing first on the critical buckling stress, then on the buckling resistance of plates with closed stiffeners. Reasons of the experienced differences between the critical stresses are explained in full detail. Moreover, possible enhancement of the resistance prediction is indicated.
机译:纵向加固的正交异性板的抗屈曲性在钢桥的设计中非常重要。欧洲规范3第1.5部分的当前计算方法基于这样的概念,即行为可以与板状和柱状行为叠加。最近的结果表明,当前方法的应用存在不确定性,例如,如果应用于具有封闭加劲肋的平板,则存在不确定性。还已知临界屈曲应力取决于其计算方式:使用壳有限元模型或使用相关代码部分附录A中的公式。两种计算方法可能导致临界应力的显着差异,然后在电阻中反映出来。一些结果表明,临界应力的壳体有限元计算可能会导致抵抗力高估,尤其是在使用封闭式加劲肋时。但是,数值和分析计算的临界应力之间存在差异的原因尚未完全阐明。因此,在本文中,讨论了纵向加劲板的弹性临界屈曲应力和屈曲阻力。本文介绍了广泛的数值研究程序的结果,该程序首先关注临界屈曲应力,然后关注具有封闭加劲肋的板的屈曲阻力。详细解释了临界应力之间经历差异的原因。此外,指示了电阻预测的可能增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号