首页> 外文期刊>Theory and Practice of Logic Programming >Minimum Model Semantics for Extensional Higher-order Logic Programming with Negation
【24h】

Minimum Model Semantics for Extensional Higher-order Logic Programming with Negation

机译:带负数的扩展高阶逻辑编程的最小模型语义

获取原文
获取原文并翻译 | 示例

摘要

Extensional higher-order logic programming has been introduced as a generalization of classical logic programming. An important characteristic of this paradigm is that it preserves all the well-known properties of traditional logic programming. In this paper we consider the semantics of negation in the context of the new paradigm. Using some recent results from non-monotonic fixed-point theory, we demonstrate that every higher-order logic program with negation has a unique minimum infinite-valued model. In this way we obtain the first purely model-theoretic semantics for negation in extensional higher-order logic programming. Using our approach, we resolve an old paradox that was introduced by W. W. Wadge in order to demonstrate the semantic difficulties of higher-order logic programming.
机译:扩展高阶逻辑编程已作为经典逻辑编程的泛化引入。该范例的一个重要特征是它保留了传统逻辑编程的所有众所周知的属性。在本文中,我们在新范式的背景下考虑了否定的语义。使用非单调不动点理论的一些最新结果,我们证明了每个带有求反的高阶逻辑程序都有一个唯一的最小无穷大模型。通过这种方式,我们获得了扩展高阶逻辑编程中否定的第一个纯模型理论语义。使用我们的方法,我们解决了W. W. Wadge引入的一个古老的悖论,以证明高阶逻辑编程的语义困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号