首页> 外文期刊>ACM transactions on computational logic >Minimum Model Semantics for Logic Programs With Negation-As-Failure
【24h】

Minimum Model Semantics for Logic Programs With Negation-As-Failure

机译:否定失效逻辑程序的最小模型语义

获取原文
获取原文并翻译 | 示例

摘要

We give a purely model-theoretic characterization of the semantics of logic programs with negation-as-failure allowed in clause bodies. In our semantics, the meaning of a program is, as in the classical case, the unique minimum model in a program-independent ordering. We use an expanded truth domain that has an uncountable linearly ordered set of truth values between False (the minimum element) and True (the maximum), with a Zero element in the middle. The truth values below Zero are ordered like the countable ordinals. The values above Zero have exactly the reverse order. Negation is interpreted as reflection about Zero followed by a step towards Zero; the only truth value that remains unaffected by negation is Zero. We show that every program has a unique minimum model M_P, and that this model can be constructed with a T_P iteration which proceeds through the countable ordinals. Furthermore, we demonstrate that M_P can alternatively be obtained through a construction that generalizes the well-known model intersection theorem for classical logic programming. Finally, we show that by collapsing the true and false values of the infinite-valued model M_P to (the classical) True and False, we obtain a three-valued model identical to the well-founded one.
机译:我们给出逻辑程序的语义的纯模型理论表征,并在子句主体中允许否定否定。在我们的语义中,程序的含义与经典情况一样,是与程序​​无关的顺序中的唯一最小模型。我们使用一个扩展的真值域,该域的真值在False(最小元素)和True(最大)之间具有不可数的线性排序,中间是零元素。零以下的真值与可数序数一样排序。零以上的值恰好相反。否定被解释为对零的反思,然后迈向零。唯一不受否定影响的真值是零。我们表明,每个程序都有一个唯一的最小模型M_P,并且可以通过可计数序数进行的T_P迭代构造此模型。此外,我们证明了可以通过对经典逻辑编程推广众所周知的模型相交定理的构造来替代获得M_P。最后,我们证明了通过将无限值模型M_P的真值和假值折叠为(经典的)真值和假值,我们得到了一个与已有的模型相同的三值模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号