首页> 外文期刊>The Visual Computer >Registration of point clouds using sample-sphere and adaptive distance restriction
【24h】

Registration of point clouds using sample-sphere and adaptive distance restriction

机译:使用样本球和自适应距离限制对点云进行配准

获取原文
获取原文并翻译 | 示例

摘要

Registration of point clouds is a fundamental problem in shape acquisition and shape modeling. In this paper, a novel technique, the sample-sphere method, is proposed to register a pair of point clouds in arbitrary initial positions. This method roughly aligns point clouds by matching pairs of triplets of points, which are approximately congruent under rigid transformation. For a given triplet of points, this method can find all its approximately congruent triplets in O(kn log n) time, where n is the number of points in the point cloud, and k is a constant depending only on a given tolerance to the rotation error. By employing the techniques of wide bases and largest common point set (LCP), our method is resilient to noise and outliers. Another contribution of this paper is proposing an adaptive distance restriction to improve ICP (iterative closest point) algorithm, which is a classical method to refine rough alignments. With this restriction, the improved ICP is able to reject unreasonable corresponding point pairs during each iteration, so it can precisely align the point clouds which have large non-overlapping regions.
机译:点云的配准是形状获取和形状建模中的一个基本问题。在本文中,提出了一种新技术,即样本球面方法,用于在任意初始位置记录一对点云。此方法通过匹配成对的三重点对大致对齐点云,三重点在刚性变换下近似一致。对于给定的三元组点,此方法可以在O(kn log n)时间内找到其所有近似三元组,其中n是点云中的点数,k是常数,仅取决于给定的公差旋转错误。通过采用宽基数和最大公共点集(LCP)的技术,我们的方法可以抵抗噪声和离群值。本文的另一个贡献是提出了一种自适应距离限制来改进ICP(迭代最近点)算法,这是一种改进粗略对齐方式的经典方法。有了这个限制,改进的ICP就能在每次迭代期间拒绝不合理的对应点对,因此它可以精确地对齐具有较大非重叠区域的点云。

著录项

  • 来源
    《The Visual Computer》 |2011年第8期|p.543-553|共11页
  • 作者

    Yu Meng; Hui Zhang;

  • 作者单位

    School of Software, Tsinghua University, Beijing 100084,P.R. China,Key Laboratory for Information System Security, Ministry of Education, Beijing 100084, P.R. China,Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P.R. China;

    School of Software, Tsinghua University, Beijing 100084,P.R. China,Key Laboratory for Information System Security, Ministry of Education, Beijing 100084, P.R. China,Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    point cloud; pairwise rigid registration; range image alignment; iterative closest point; random sample consensus;

    机译:点云;成对刚性套准;距离图像对准;迭代最近点;随机样本共识;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号