首页> 外文期刊>The Visual Computer >Spatial consistency of dense features within interest regions for efficient landmark recognition
【24h】

Spatial consistency of dense features within interest regions for efficient landmark recognition

机译:感兴趣区域内密集特征的空间一致性,可实现有效的地标识别

获取原文
获取原文并翻译 | 示例

摘要

Recently, feature grouping has been proposed as a method for improving retrieval results for logos and web images. This relies on the idea that a group of features matching over a local region in an image is more discriminative than a single feature match. In this paper, we evolve this concept further and apply it to the more challenging task of landmark recognition. We propose a novel combination of dense sampling of SIFT features with interest regions which represent the more salient parts of the image in greater detail. In place of conventional dense sampling used in category recognition that computes features on a regular grid at a number of fixed scales, we allow the sampling density and scale to vary based on the scale of the interest region. We develop new techniques for exploring stronger geometric constraints inside the feature groups and computing the match score. The spatial information is stored efficiently in an inverted index structure. The proposed approach considers part-based matching of interest regions instead of matching entire images using a histogram under bag-of-words. This helps reducing the influence of background clutter and works better under occlusion. Experiments reveal that directing more attention to the salient regions of the image and applying proposed geometric constraints helps in vastly improving recognition rates for reasonable vocabulary sizes.
机译:近来,已经提出了特征分组作为改善徽标和网络图像的检索结果的方法。这依赖于这样的想法,即在图像的局部区域上匹配的一组特征比单个特征匹配更具判别力。在本文中,我们将进一步发展这一概念,并将其应用于具有里程碑意义的更具挑战性的任务。我们提出了SIFT特征的密集采样与感兴趣区域的新颖组合,该感兴趣区域更详细地表示了图像中更显着的部分。代替类别识别中使用的常规密集采样(它以多个固定比例在规则网格上计算特征),我们允许采样密度和比例根据感兴趣区域的比例而变化。我们开发了新的技术来探索要素组内部更强的几何约束并计算匹配分数。空间信息以倒排索引结构有效地存储。所提出的方法考虑了兴趣区域的基于部分的匹配,而不是在词袋下使用直方图来匹配整个图像。这有助于减少背景杂波的影响,并且在遮挡下效果更好。实验表明,将更多的注意力转移到图像的显着区域并应用建议的几何约束有助于大幅提高合理词汇量的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号