首页> 外文期刊>The Visual Computer >SSG: superpixel segmentation and GrabCut-based salient object segmentation
【24h】

SSG: superpixel segmentation and GrabCut-based salient object segmentation

机译:SSG:超像素分割和基于GrabCut的显着对象分割

获取原文
获取原文并翻译 | 示例

摘要

Saliency detection is a popular topic for image processing recently. In this paper, we propose a simple, robust and fast salient object segmentation framework. Firstly, we develop a novel saliency map segmentation strategy, named SSG which consists of superpixel region growing, superpixel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering and iterated graph cuts (GrabCut), where DBSCAN makes similar background regions cluster as a whole, region growing groups similar regions together as much as possible, GrabCut segments salient objects accurately. Then, the proposed SSG is combined with saliency detection to abstract salient objects. Experimental results on three benchmark datasets demonstrate that the proposed method achieves the favorable performance than many recent state-of-the-art methods in terms of precision, recall, F-measure and execution time.
机译:显着性检测是最近图像处理的热门话题。在本文中,我们提出了一个简单,健壮和快速的显着对象分割框架。首先,我们开发了一种新的显着性地图分割策略,称为SSG,它由超像素区域增长,基于超像素密度的应用程序空间聚类与噪声(DBSCAN)聚类和迭代图割(GrabCut)组成,其中DBSCAN使得相似的背景区域聚类为总体而言,区域增长将尽可能多的相似区域组合在一起,GrabCut可以准确地分割显着对象。然后,将提出的SSG与显着性检测相结​​合以抽象出显着对象。在三个基准数据集上的实验结果表明,相对于许多最新技术,该方法在精度,查全率,F量度和执行时间方面均具有良好的性能。

著录项

  • 来源
    《The Visual Computer》 |2019年第3期|385-398|共14页
  • 作者单位

    Hunan Univ, Natl Engn Lab Robot Visual Percept & Control Tech, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, Natl Engn Lab Robot Visual Percept & Control Tech, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, Natl Engn Lab Robot Visual Percept & Control Tech, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, Natl Engn Lab Robot Visual Percept & Control Tech, Changsha 410082, Hunan, Peoples R China;

    Hunan Normal Univ, Changsha 410082, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salient object segmentation; Superpixel segmentation; GrabCut; Region growing; DBSCAN clustering;

    机译:显着目标分割;超像素分割;GrabCut;区域增长;DBSCAN聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号