首页> 外文期刊>Multimedia, IEEE Transactions on >Salient Object Segmentation via Effective Integration of Saliency and Objectness
【24h】

Salient Object Segmentation via Effective Integration of Saliency and Objectness

机译:通过显着性和客观性的有效整合进行显着对象分割

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective salient object segmentation method via the graph-based integration of saliency and objectness. Based on the superpixel segmentation result of the input image, a graph is built to represent superpixels using regular vertex, background seed vertex with the addition of a terminal vertex. The edge weights on the graph are defined by integrating the difference of appearance, saliency, and objectness between superpixels. Then, the object probability of each superpixel is measured by finding the shortest path from the corresponding vertex to the terminal vertex on the graph, and the resultant object probability map can generally better highlight salient objects and suppress background regions compared to both saliency map and objectness map. Finally, the object probability map is used to initialize salient object and background, and effectively incorporated into the framework of graph cut to obtain the final salient object segmentation result. Extensive experimental results on three public benchmark datasets show that the proposed method consistently improves the salient object segmentation performance and outperforms the state-of-the-art salient object segmentation methods. Furthermore, experimental results also demonstrate that the proposed graph-based integration method is more effective than other fusion schemes and robust to saliency maps generated using various saliency models.
机译:通过基于图的显着性和客观性的集成,提出了一种有效的显着目标分割方法。根据输入图像的超像素分割结果,使用常规顶点,背景种子顶点以及最终顶点来构建一个图形,以表示超像素。通过积分超像素之间的外观,显着性和客观性的差异来定义图形上的边缘权重。然后,通过在图中找到从相应顶点到最终顶点的最短路径,来测量每个超像素的对象概率,与显着图和对象相比,生成的对象概率图通常可以更好地突出显示显着对象并抑制背景区域地图。最后,利用对象概率图初始化显着对象和背景,并将其有效地并入图割的框架中,以获得最终的显着对象分割结果。在三个公共基准数据集上的大量实验结果表明,所提出的方法不断提高显着对象分割性能,并且胜过最新的显着对象分割方法。此外,实验结果还表明,所提出的基于图的集成方法比其他融合方案更有效,并且对使用各种显着性模型生成的显着性图具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号