机译:通过显着性和客观性的有效整合进行显着对象分割
School of Communication and Information Engineering, Shanghai University, Shanghai, China;
School of Communication and Information Engineering, Shanghai University, Shanghai, China;
School of Communication and Information Engineering, Shanghai University, Shanghai, China;
School of Communication and Information Engineering, Shanghai University, Shanghai, China;
College of Computer Science, Zhejiang University of Technology, Hangzhou, China;
Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada;
Object segmentation; Image segmentation; Predictive models; Image color analysis; Benchmark testing; Image edge detection; Computer science;
机译:使用显着图和颜色分割的自动显着对象分割
机译:基于图像分割和显着性检测的两步显着对象提取框架
机译:视频中突出对象分段的对象提案
机译:显着内部转移以有效地进行显着对象检测
机译:显着削减:一种基于显着能量最小化的视频对象自动分割方法
机译:Web图像中显着对象的分布及其对显着对象检测的影响
机译:掩蔽突出物体检测,基于掩模区域的卷积神经网络分析,用于分割突出对象