首页> 外文期刊>The Visual Computer >Fast example searching for input-adaptive data-driven dehazing with Gaussian process regression
【24h】

Fast example searching for input-adaptive data-driven dehazing with Gaussian process regression

机译:使用高斯过程回归快速搜索输入自适应数据驱动的除雾示例

获取原文
获取原文并翻译 | 示例

摘要

Recently, data-driven approaches are prevailing in low-level image processing including single image dehazing. The performance of these methods can behave better when the learning process adapts to the input. This input-adaptive training demands efficiently selecting optimal examples for the input from a large training set. In this paper, we address the issue of input-specific example searching and propose a fast searching strategy on vast image examples to learn a more accurate Gaussian process (GP) regressor for single image dehazing. The GP regression learnt from these optimal examples is able to produce the transmission prediction with lower variance and thus renders high robustness. Extensive experiments on hazy images at various haze levels demonstrate the effectiveness of the proposed example searching compared with the state-of-the-art data-driven dehazing methods.
机译:近来,数据驱动方法在包括单图像去雾的低级图像处理中占主导地位。当学习过程适应输入时,这些方法的性能会更好。这种支持输入的训练要求从大型训练集中为输入选择有效的最佳示例。在本文中,我们解决了输入特定示例搜索的问题,并针对大量图像示例提出了一种快速搜索策略,以学习用于单图像去雾的更准确的高斯过程(GP)回归器。从这些最佳示例中学到的GP回归能够产生具有较低方差的传输预测,因此具有较高的鲁棒性。与各种最新的数据驱动除雾方法相比,在各种雾度下对模糊图像进行的大量实验证明了所提出示例搜索的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号