首页> 外文期刊>The Visual Computer >TOP-SIFT: the selected SIFT descriptor based on dictionary learning
【24h】

TOP-SIFT: the selected SIFT descriptor based on dictionary learning

机译:TOP-SIFT:基于字典学习的所选SIFT描述符

获取原文
获取原文并翻译 | 示例

摘要

The large amount of SIFT descriptors in an image and the high dimensionality of SIFT descriptor have made problems for the large-scale image database in terms of speed and scalability. In this paper, we present a descriptor selection algorithm based on dictionary learning to remove the redundant features and reserve only a small set of features, which we refer to as TOP-SIFTs. During the experiment, we discovered the inner relativity between the problem of descriptor selection and dictionary learning in sparse representation, and then turned our problem into dictionary learning. We designed a new dictionary learning method to adapt our problem and employed the simulated annealing algorithm to obtain the optimal solution. During the process of learning, we added the sparsity constraint and spatial distribution characteristic of SIFT points. And lastly selected the small representative feature set with good spatial distribution. Compared with the earlier methods, our method is neither relying on the database nor losing important information, and the experiments have shown that our algorithm can save memory space a lot and increase time efficiency while maintaining the accuracy as well.
机译:图像中大量的SIFT描述符和SIFT描述符的高维性在速度和可伸缩性方面给大型图像数据库带来了问题。在本文中,我们提出了一种基于字典学习的描述符选择算法,以去除冗余特征并仅保留一小部分特征,我们将其称为TOP-SIFT。在实验过程中,我们发现了稀疏表示中描述符选择和字典学习之间的内在联系,然后将问题转化为字典学习。我们设计了一种新的字典学习方法来适应我们的问题,并采用模拟退火算法来获得最佳解。在学习过程中,我们增加了SIFT点的稀疏约束和空间分布特征。最后选择了具有良好空间分布的小型代表性特征集。与以前的方法相比,我们的方法既不依赖数据库,也不丢失重要信息,实验表明,该算法在保持精度的同时,可以节省大量存储空间,提高时间效率。

著录项

  • 来源
    《The Visual Computer》 |2019年第5期|667-677|共11页
  • 作者单位

    China Univ Petr, Coll Comp & Commun Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr, Coll Comp & Commun Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr, Coll Comp & Commun Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr, Coll Comp & Commun Engn, Qingdao, Shandong, Peoples R China;

    Univ N Carolina, Dept Comp Sci, Charlotte, NC USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SIFT descriptor selection; Dictionary learning; Sparse coding; Feature compression;

    机译:SIFT描述符选择;字典学习;稀疏编码;特征压缩;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号