首页> 外文期刊>Pattern recognition letters >Enhancing SIFT-based image registration performance by building and selecting highly discriminating descriptors
【24h】

Enhancing SIFT-based image registration performance by building and selecting highly discriminating descriptors

机译:通过构建和选择高度区分的描述符来增强基于SIFT的图像配准性能

获取原文
获取原文并翻译 | 示例

摘要

In this paper we will investigate the gradient utilization in building SIFT ( Scale Invariant Feature Transform)-like descriptors for image registration. There are generally two types of gradient information, i.e. gradient magnitude and gradient occurrence, which can be used for building SIFT-like descriptors. We will provide a theoretical analysis on the effectiveness of each of the two types of gradient information when used individually. Based on our analysis, we will propose a novel technique which systematically uses both types of gradient information together for image registration. Moreover, we will propose a strategy to select keypoint matches with a higher discrimination. The proposed technique can be used for both mono-modal and multi-modal image registration. Our experimental results show that the proposed technique improves registration accuracy over existing SIFT-like descriptors. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们将研究在构建类似于SIFT(尺度不变特征变换)的图像配准描述符中的梯度利用。通常有两种类型的梯度信息,即梯度大小和梯度出现,可用于构建类似SIFT的描述符。我们将对两种梯度信息分别使用时的有效性进行理论分析。基于我们的分析,我们将提出一种新颖的技术,该技术可以将两种类型的梯度信息一起用于图像配准。此外,我们将提出一种策略,以选择具有较高区分度的关键点匹配。所提出的技术可以用于单模态和多模态图像配准。我们的实验结果表明,所提出的技术比现有的类似SIFT的描述符提高了配准精度。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号