首页> 外文期刊>Pattern recognition letters >Enhancing image registration performance by incorporating distribution and spatial distance of local descriptors
【24h】

Enhancing image registration performance by incorporating distribution and spatial distance of local descriptors

机译:通过结合局部描述符的分布和空间距离来提高图像配准性能

获取原文
获取原文并翻译 | 示例

摘要

A data dependency similarity measure called m(p)-dissimilarity has been recently proposed. Unlike l(p)-norm distance which is widely used in calculating the similarity between vectors, mp-dissimilarity takes into account the relative positions of the two vectors with respect to the rest of the data. This paper investigates the potential of mp-dissimilarity in matching local image descriptors. Moreover, three new matching strategies are proposed by considering both l(p)-norm distance and m(p)-dissimilarity. Our proposed matching strategies are extensively evaluated against l(p)-norm distance and m(p)-dissimilarity on a few benchmark datasets. Experimental results show that m(p)-dissimilarity is a promising alternative to l(p)-norm distance in matching local descriptors. The proposed matching strategies outperform both l(p)-norm distance and m(p)-dissimilarity in matching accuracy. One of our proposed matching strategies is comparable to l(p)-norm distance in terms of recall vs 1-precision. (c) 2018 Elsevier B.V. All rights reserved.
机译:最近已经提出了一种称为m(p)-不相似性的数据相关性相似性度量。与广泛用于计算向量之间相似度的l(p)-范数距离不同,mp-非相似度考虑了两个向量相对于其余数据的相对位置。本文研究了mp差异在匹配本地图像描述符中的潜力。此外,通过考虑l(p)-范数距离和m(p)-不相似性,提出了三种新的匹配策略。我们针对几个基准数据集针对l(p)-范数距离和m(p)-不相似性广泛评估了我们提出的匹配策略。实验结果表明,在匹配局部描述符中,m(p)-相异性是l(p)-范数距离的有希望的替代方法。所提出的匹配策略在匹配精度方面优于l(p)-标准距离和m(p)-不相似。就召回率与1精度而言,我们提出的一种匹配策略可与l(p)-标准距离相媲美。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号