首页> 外文期刊>Technological forecasting and social change >Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014
【24h】

Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014

机译:基于专利数据的基于主题的技术预测:以2000年至2014年澳大利亚专利为例

获取原文
获取原文并翻译 | 示例

摘要

The study of technological forecasting is an important part of patent analysis. Although fitting models can provide a rough tendency of a technical area, the trend of the detailed content within the area remains hidden. It is also difficult to reveal the trend of specific topics using keyword-based text mining techniques, since it is very hard to track the temporal patterns of a single keyword that generally represents a technological concept. To overcome these limitations, this research proposes a topic-based technological forecasting approach, to uncover the trends of specific topics underlying massive patent claims using topic modelling. A topic annual weight matrix and a sequence of topic-based trend coefficients are generated to quantitatively estimate the developing trends of the discovered topics, and evaluate to what degree various topics have contributed to the patenting activities of the whole area. To demonstrate the effectiveness of the approach, we present a case study using 13,910 utility patents that were published during the years 2000 to 2014, owned by Australian assignees, in the United States Patent and Trademark Office (USPTO). The results indicate that the proposed approach is effective for estimating the temporal patterns and forecast the future trends of the latent topics underlying massive claims. The topic based knowledge and the corresponding trend analysis provided by the approach can be used to facilitate further technological decisions or opportunity discovery. (C) 2017 Elsevier Inc. All rights reserved.
机译:技术预测研究是专利分析的重要组成部分。尽管拟合模型可以提供技术领域的大致趋势,但是该领域内详细内容的趋势仍然隐藏。使用基于关键字的文本挖掘技术也很难揭示特定主题的趋势,因为很难跟踪通常代表一个技术概念的单个关键字的时间模式。为了克服这些局限性,本研究提出了一种基于主题的技术预测方法,以利用主题建模来发现大量专利声明所依据的特定主题的趋势。生成主题年度权重矩阵和一系列基于主题的趋势系数,以定量估计发现的主题的发展趋势,并评估各种主题对整个地区的专利活动做出了何种程度的贡献。为了证明该方法的有效性,我们使用2000年至2014年间在美国专利商标局(USPTO)中由澳大利亚受让人拥有的13,910项实用新型专利进行了案例研究。结果表明,所提出的方法可有效地估计时间模式并预测大量索赔背后的潜在主题的未来趋势。该方法提供的基于主题的知识和相应的趋势分析可用于促进进一步的技术决策或机会发现。 (C)2017 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Technological forecasting and social change》 |2017年第6期|39-52|共14页
  • 作者单位

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, POB 123, Sydney, NSW 2007, Australia;

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, POB 123, Sydney, NSW 2007, Australia;

    Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China;

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, POB 123, Sydney, NSW 2007, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Technological forecasting; Text mining; Topic modelling; Topic analysis;

    机译:技术预测;文本挖掘;主题建模;主题分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号