首页> 外文期刊>Systems and Computers in Japan >Hypercolumn Model: A Combination Model of Hierarchical Self-Organizing Maps and Neocognitron for Image Recognition
【24h】

Hypercolumn Model: A Combination Model of Hierarchical Self-Organizing Maps and Neocognitron for Image Recognition

机译:超柱模型:分层自组织图和新认知子的图像识别组合模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a neural network model, the hyperco- lumn model(HCM), which is applicable to general image recognition, is proposed. The HCM is combination model of hierarchical self-organizing maps(HSOM)and neocog- nitron(NC); it resolves the disadvantages of both the HSOM and the NC, and inherits all of the advantages of Both models. The HSOM quantizes and nonlinearly maps An input space into a small dimensional feature map.
机译:本文提出了一种适用于一般图像识别的神经网络模型,即超柱模型(HCM)。 HCM是分层自组织图(HSOM)和新星硝子(NC)的组合模型;它解决了HSOM和NC的缺点,并继承了Both模型的所有优点。 HSOM会将输入空间量化并非线性映射到小维特征图中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号