首页> 外文期刊>Artificial life and robotics >Feature map sharing hypercolumn model for shift invariant face recognition
【24h】

Feature map sharing hypercolumn model for shift invariant face recognition

机译:特征图共享超柱模型用于不变人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a shift-invariant pattern recognition mechanism using a feature-sharing hypercolumn model (FSHCM).To improve the recognition rate and to reduce the memory requirements of the hypercolumn model (HCM), a shared map is constructed to replace a set of local neighborhood maps in the feature extraction and feature integration layers. The shared maps increase the ability of the network to deal with translation and distortion variations in the input image. The proposed face recognition system employed a FSHCM neural network to perform feature extraction and use a linear support vector machine for a recognition task. The effectiveness of the proposed approach is verified by measuring the recognition accuracy using the misaligned ORL face database.
机译:在本文中,我们提出了一种使用特征共享超柱模型(FSHCM)的位移不变模式识别机制。为提高识别率并减少超柱模型(HCM)的内存需求,构建了一个共享映射来替换要素提取和要素集成层中的一组局部邻域地图。共享地图提高了网络处理输入图像中平移和变形变化的能力。拟议的人脸识别系统采用FSHCM神经网络执行特征提取,并使用线性支持向量机进行识别任务。通过使用未对齐的ORL人脸数据库测量识别准确性,验证了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号